Author: Borland, M.
Paper Title Page
TUOAS1 Tutorial on Accelerator-Based Light Sources 702
 
  • M. Borland
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Accelerator-based light sources are some of the largest and most successful scientific user facilities in existence, serving tens of thousands of users each year. These important facilities enable research in diverse fields, including biology, pharmaceuticals, energy conservation and production, data storage, and archaeology. In this tutorial, we briefly review the history of accelerator-based light sources. We present an overview of the different types of accelerator-based light sources, including a description of their various operating principles, as well as a discussion of measures of performance. Technical challenges of current and future light sources are also reviewed.
 
slides icon Slides TUOAS1 [1.421 MB]  
 
TUOCS2 Accelerator Aspects of the Advance Photon Source Upgrade 766
 
  • L. Emery, M. Borland, G. Decker, K.C. Harkay, E.R. Moog, R. Nassiri
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source (APS) is a third-generation storage-ring-based x-ray source that has been operating for more than 13 years and is enjoying a long period of stable, reliable operation. While APS is presently providing state-of-the-art performance to its large user community, we must plan for improvements and upgrades to stay at the forefront scientifically. Significant improvements should be possible through upgrades of beamline optics, detectors, and end-station equipment. In this paper, we discuss the evolutionary changes that are envisioned for the storage ring itself. These include short-pulse x-rays, long straight sections, superconducting undulators, improved beam stability, and higher current. With these and other changes, we anticipate significant improvements in capacity, flux, and brightness, along with the ability to perform unique time-resolved experiments.
 
slides icon Slides TUOCS2 [0.932 MB]  
 
TUODN2 Exploration of Parallel Optimization Techniques for Accelerator Design 787
 
  • Y. Wang, M. Borland, V. Sajaev
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Optimization through simulation is a time-consuming task in accelerator design, especially for high dimensional problems. We explored several parallel optimization techniques, including Parallel Genetic Algorithm (PGA), Hybrid Parallel Simplex (HPS), and Parallel Particle Swarm Optimization (PPSO), to solve some real world problems. The serial simplex method in elegant was used as a benchmark for newly-developed parallel optimization algorithms in Pelegant. PGA and HPS are not faster than the serial simplex method, but they more reliably find the global optimum. PPSO is well suited for parallel computing, allowing significantly faster turn-around given sufficient computing resources. Parallel optimization implementations in Pelegant thus promise to not only make optimization results more reliable, but also open the possibility of fast, "real time" optimization of complex problems for accelerator operation.
 
slides icon Slides TUODN2 [0.218 MB]  
 
WEOBS5 Status of the Short-Pulse X-ray Project (SPX) at the Advanced Photon Source (APS) 1427
 
  • R. Nassiri, N.D. Arnold, G. Berenc, M. Borland, D.J. Bromberek, Y.-C. Chae, G. Decker, L. Emery, J.D. Fuerst, A.E. Grelick, D. Horan, F. Lenkszus, R.M. Lill, V. Sajaev, T.L. Smith, G.J. Waldschmidt, G. Wu, B.X. Yang, A. Zholents
    ANL, Argonne, USA
  • J.M. Byrd, L.R. Doolittle, G. Huang
    LBNL, Berkeley, California, USA
  • G. Cheng, G. Ciovati, J. Henry, P. Kneisel, J.D. Mammosser, R.A. Rimmer, L. Turlington, H. Wang
    JLAB, Newport News, Virginia, USA
 
  Funding: Work at Argonne is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11354.
The Advanced Photon Source Upgrade project (APS-U) at Argonne includes implementation of Zholents’* deflecting cavity scheme for production of short x-ray pulses. This is a joint project between Argonne National Laboratory, Thomas Jefferson National Laboratory, and Lawrence Berkeley National Laboratory. This paper describes performance characteristics of the proposed source and technical issues related to its realization. Ensuring stable APS storage ring operation requires reducing quality factors of these modes by many orders of magnitude. These challenges reduce to those of the design of a single-cell SC cavity that can achieve the desired operating deflecting fields while providing needed damping of all these modes. The project team is currently prototyping and testing several promising designs for single-cell cavities with the goal of deciding on a winning design in the near future.
*A. Zholents et al., NIM A 425, 385 (1999).
 
slides icon Slides WEOBS5 [1.730 MB]  
 
WEP063 Tracking Particles Through A General Magnetic Field 1591
 
  • A. Xiao, M. Borland, L. Emery, Y. Wang
    ANL, Argonne, USA
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
A method that tracks particles directly through a general magnetic field described in a 3D field table was added to the code elegant recently. It was realized by converting an arbitrary particle's motion to a combination of free-drift motion and centripetal motion through the coordinate system rotation and using a general linear interpolation tool developed at the Advanced Photon Source (APS). This method has been tested by tracking particles through conventional magnetic elements (dipole, sextupole, etc.) to verify reference coordinate system conversions, tracking accuracy, and long-term tracking stability. Results show a very good agreement between this new method and the traditional method. This method is not designed to replace mature traditional methods that have been used in most tracking codes. Rather, it is useful for magnets with complicated field profiles or for studying edge effects.
 
 
WEP064 Beam Dynamics Study of the Intermediate Energy X-Ray Wiggler for the Advanced Photon Source 1594
 
  • A. Xiao, M. Borland, L. Emery, M.S. Jaski, V. Sajaev
    ANL, Argonne, USA
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
An intermediate-energy x-ray (IEX) helical wiggler is planned for the APS storage ring. Because of its high field and rapid field roll-off, the disturbance to the beam dynamics is large and needs to be well understood before the installation. We present a new method of fitting the magnetic field to an analytical wiggler model, which simplifies the usual nonlinear fitting problem and guarantees the best fit. The fitting method was validated by comparison to an analytical method.
 
 
THP119 Potential Two-fold Reduction of Advanced Photon Source Emittance using Orbit Displacement 2339
 
  • M. Borland
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source (APS) is a 7-GeV electron storage ring light source that operates with an effective emittance of 3.1 nm using optics with distributed dispersion. Lower emittance is desirable for some x-ray experiments, but is difficult using conventional optics adjustments because of the required strength of quadrupoles and sextupoles. Changing the damping partition number by changing the rf frequency is another approach, but is incompatible with distributed dispersion because it would require simultaneous realignment of all APS beamlines. In this paper, we evaluate a new approach to changing the damping partition number using a systematic orbit bump in all sectors.
 
 
THP122 Comparison of Chirp Schemes for Short-Pulse X-ray Beams in Light Sources 2348
 
  • L. Emery, M. Borland, A. Zholents
    ANL, Argonne, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357.
The Advanced Photon Source is planning [*] to produce a short-pulse x-ray beam by way of rf deflecting cavities that locally impose a y'-t correlation on the stored beam at an insertion device. SPring-8 recently proposed [**] a variation on this scheme whereby the deflecting cavities impose a local y-t correlation on the stored beam. In one case the chirp is in the angle coordinate and in the other case the position coordinate. They both use slits to pass through a "short" portion of the photon beam. The practical limitations for the two schemes are discussed and compared, such as photon source size and angular divergence, storage ring apertures, and slit transmission.
* A. Nassiri et al., these proceedings
** T. Fujita et al., Proc. of IPAC10, p. 39
 
 
THP124 Higher Current Operation for the APS Upgrade 2351
 
  • K.C. Harkay, G. Berenc, M. Borland, Y.-C. Chae, L. Emery, D. Horan, R. Nassiri, V. Sajaev, K.M. Schroeder, G.J. Waldschmidt, A. Xiao, C. Yao
    ANL, Argonne, USA
 
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source is a 7-GeV hard x-ray synchrotron light source. Operation for users is delivered at a nominal current of 100 mA in one of three bunch patterns. The APS Upgrade calls for a minimum planned operating current of 150 mA, with an option to deliver beam up to 200 mA. The high-current threshold in the storage ring has been explored, and storage ring components have been identified that either drive collective instabilities or are subjected to excessive beam-drive higher-order-mode (HOM) heating. In this paper, we describe machine studies at 150 mA in a special lattice that simulates the upgraded APS. We also describe the accelerator upgrades that are required to accommodate 200-mA operation, as well as the ongoing machine studies plan.
 
 
THP125 Multi-objective Optimization of a Lattice for Potential Upgrade of the Advanced Photon Source* 2354
 
  • V. Sajaev, M. Borland, L. Emery, A. Xiao
    ANL, Argonne, USA
 
  Funding: *Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source (APS) is a 7-GeV storage ring light source that has been in operation for over a decade. In the near future, the ring may be upgraded, including changes to the lattice such as provision of several long straight sections (LSSs). Use of deflecting cavities for generation of short x-ray pulses is also considered. Because APS beamlines are nearly fully built out, we have limited freedom to place LSSs in a symmetric fashion. Arbitrarily placed LSSs will drastically reduce the symmetry of the optics and would typically be considered unworkable. We apply a recently developed multi-objective direct optimization technique that relies on particle tracking to compute the dynamic aperture and Touschek lifetime. We show that this technique is able to tune sextupole strengths and select the working point in such a way as to recover the dynamic and momentum acceptances. We also show the results of experimental tests of lattices developed using these techniques.
 
 
THP126 Obtaining Sub-Picosecond X-Ray Pulses in the Advanced Photon Source Using Laser Slicing 2357
 
  • A. Zholents, M. Borland
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357
The laser slicing technique* has been successfully applied at several low- to medium-energy storage ring light sources to create sub-picosecond pulses of x-rays. Application to high-energy storage rings has been considered problematic because of the required average laser power. However, because of on going advances in laser technology, this technique is now within reach at light sources like the Advanced Photon Source (APS), which operates at 7 GeV. In this paper, we analyze the potential performance of laser slicing at the APS, and compare it to alternatives such as deflecting cavities.
* R. W. Schoenlien et al., Science, 287, 2237(2000).