
Exploration of Parallel Optimization Techniques for Accelerator DesignExploration of Parallel Optimization Techniques for Accelerator Design

 3/29/2011

Yusong Wang Michael Borland Vadim V. Sajaev

Motivation

● Optimization through simulations is very time consuming for real-world
accelerator designs

● High dimensions
● Long simulation time
● Noisy searching space

● Traditional method, such as simplex, could be easily trapped to a local optimum
● Optimization time is limited by on-demand accelerator adjustment requirements
● Computer performance is improved by adding more cores instead of increasing

processor speed at present
● Several widely-used global optimization methods, such as genetic algorithm,

particle swarm optimization, are embarrassingly parallel
● No communication needed during a simulation
● Very little information shared between processors

Parallel Hybrid Simplex Algorithm

Mutate the starting points xBest on each CPU
xk = xBestk-1 + r x step

 yBestk < target

or k < Max_iteration

Stop

 Gather the optimal value yBestk across all the processors

 Broadcast the optimal solution vector xBestk

Initialize xBest with starting point

simplex(x
1
) simplex(x

2
) simplex(x

n
)

No

Yes

• First introduced by Kennedy and Eberhart in 1995
• Inspired by social behavior of birds, fish

• The penalty function needs not to be differentiable
– Suitable for optimization through simulations

• Efficient global optimization algorithm

xk+1
i
= xk

i
+

vk+1

i
 Update individual particle positions

vk+1
i
= wkvk

i
+ c

1
r

1
(p

i
-x

i
) + c

2
r

2
(p

g
-x

i
)

w Inertia weight
xk

i
Particle position k Iteration number

vk
i

Particle velocity i Particle ID

p
i

Best particle position c
1
,c

2
Cognitive and social parameters

p
g

Best swarm position r
1
,r

2
Random numbers

social
influence

personal
influence

inertia

Particle Swarm Optimization

Parallel Particle Swarm Optimization

Initialize population

Update the best particle and swarm positions
If (f(x

i
) < f(p

i
)) p

i
=x

i
If (f(p

i
) < f(p

g
) p

g
=p

i

Minimize f(p
g
) across all the processors

f(x
1
) f(x

2
) f(x

n
)

Termination criteria
 satisfied

Stop

Generate coordinates for the next iteration

No

Yes

 Using a response matrix method and singular value decomposition performs
poorly as a result of the small number of skew quadrupoles

• Minimize the sums of the squares of the vertical beam size at the source point
by adjusting the strength of the 19 skew quadrupoles

• The optimization needs to be done within half an hour for online tuning

• It took more than 6 hours for the serial simplex method to reach an optimum of
0.057 on a computer with a 2.4 GHz CPU

• The hybrid simplex method requires several hundreds of function evaluations
per iteration, which will take more than one hour

 As little as one function evaluation per processor is needed for the parallel
particle swarm optimization

Coupling Minimization at APS

Coupling Minimization at APS (continued)

 The number of CPUs is the same as the
number of individuals

 One function evaluation per CPU

 The algorithm converges faster with a larger
number of CPUs/individuals

 It took 28 minutes on 4k CPUs to finish 50
iterations to reach the target

 The optimization time can be reduced to 20
minutes with 30 iterations on 16k CPUs

Parallel particle swarm optimization on
the Intrepid supercomputer at Argonne
Leadership Computing Facility (ALCF)

Twiss Parameter Optimization at APS

● 38 independent quadrupoles
● Can not reach the target after 6 hours with

the serial simplex (>260k evaluations)
● Using 1k compute nodes (4k CPU cores)

● One individual per CPU core
● The parallel hybrid simplex converges to

the target within 1.5 hours (7.5k function
evaluations)

● The solution of the problem is very close to
the given starting point

● Very fine tuning in a local area

Twiss parameter optimization results with
different algorithms on the Intrepid
supercomputer. The target value is 1.

Conclusion and Future Improvement

 The parallel optimization algorithms will reduce the optimization time and achieve a
better optimization result on parallel computers.

 Parallel optimization methods will allow taking advantage of hardware trend toward
massively multi-core computers.

 A single algorithm can not fit different problem requirements
 Particle swarm optimization and genetic optimization have their advantages in

global optimization
 Hybrid simplex is efficient for fine tuning in a local neighborhood

 The genetic optimization can be improved by applying adaptive step-size control for
each of the dimensions

 Parallel function evaluations in the simplex algorithm can be used to reduce the
optimization time

References

● M. Borland, Advanced Photon Source Light Source note LS-287, Sept. 2000.

● Y. Wang et al., Proc. ICAP09, p. 355 (2009).

● D. Levine, ANL Report ANL-95/18 (1996).

● J. Kennedy and R. C. Eberhart, Proc. of IEEE International Conference on Neural
Networks, p. 1942 (1995).

● Y. Shi and R. C. Eberhart, Proc. of IEEE International Conference on Evolutionary
Computation, p. 69 (1998).

● C. Wang et al., Proc. IPAC10, p. 4605 (2010).

● H. Shang et al., Proc. PAC05, p. 4230 (2005).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

