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Motivation

● Optimization through simulations is very time consuming for real-world 
accelerator designs

● High dimensions
● Long simulation time
● Noisy searching space

● Traditional method, such as simplex, could be easily trapped to a local optimum
● Optimization time is limited by on-demand accelerator adjustment requirements
● Computer performance is improved by adding more cores instead of increasing 

processor speed at present
● Several widely-used global optimization methods, such as genetic algorithm, 

particle swarm optimization, are embarrassingly parallel
● No communication needed during a simulation
● Very little information shared between processors  



Parallel Hybrid Simplex Algorithm

                                 

Mutate the starting points xBest on each CPU
xk = xBestk-1 + r x step

    yBestk < target

or k < Max_iteration  

Stop

   Gather the optimal value yBestk across all the processors

     Broadcast the optimal solution vector xBestk

Initialize xBest with starting point
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• First introduced by Kennedy and Eberhart in 1995
• Inspired by social behavior of birds, fish

• The penalty function needs not to be differentiable 
– Suitable for optimization through simulations 

• Efficient global optimization algorithm 
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Particle Swarm Optimization



Parallel Particle Swarm Optimization

Initialize population

Update the best particle and swarm positions
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 Using a response matrix method and singular value decomposition performs 
poorly as a result of the small number of skew quadrupoles 

• Minimize the sums of the squares of the vertical beam size at the source point 
by adjusting the strength of the 19 skew quadrupoles

• The optimization needs to be done within half an hour for online tuning

• It took more than 6 hours for the serial simplex method to reach an optimum of 
0.057 on a computer with a 2.4 GHz CPU

• The hybrid simplex method requires several hundreds of function evaluations 
per iteration, which will take more than one hour

 As little as one function evaluation per processor is needed for the parallel 
particle swarm optimization

Coupling Minimization at APS



Coupling Minimization at APS (continued)

 The number of CPUs is the same as the 
number of individuals

 One function evaluation per CPU

 The algorithm converges faster with a larger 
number of CPUs/individuals

 It took 28 minutes on 4k CPUs to finish 50 
iterations to reach the target

 The optimization time can be reduced to 20 
minutes with 30 iterations on 16k CPUs

Parallel particle swarm optimization on 
the Intrepid supercomputer at Argonne 
Leadership Computing Facility (ALCF)



Twiss Parameter Optimization at APS

● 38 independent quadrupoles
● Can not reach the target after 6 hours with 

the serial simplex (>260k evaluations)
● Using 1k compute nodes (4k CPU cores)

● One individual per CPU core
● The parallel hybrid simplex converges to 

the target within 1.5 hours (7.5k function 
evaluations)

● The solution of the problem is very close to 
the given starting point

● Very fine tuning in a local area

Twiss parameter optimization results with 
different algorithms on the Intrepid 
supercomputer. The target value is 1.



Conclusion and Future Improvement

 The parallel optimization algorithms will reduce the optimization time and achieve a 
better optimization result on parallel computers.

 Parallel optimization methods will allow taking advantage of hardware trend toward 
massively multi-core computers.

 A single algorithm can not fit different problem requirements
 Particle swarm optimization and genetic optimization have their advantages in 

global optimization
 Hybrid simplex is efficient for fine tuning in a local neighborhood

 The genetic optimization can be improved by applying adaptive step-size control for 
each of the dimensions

 Parallel function evaluations in the simplex algorithm can be used to reduce the 
optimization time
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