

# Status of Short X-ray Pulse (SPX) Project at the Advanced Photon Source

#### Ali Nassiri

On behalf of APS-U SPX Technical Team

**Accelerator Systems Division** 

2011 Particle Accelerator Conference Wednesday, March 30, 2011



# Outline

Transverse RF Chirp Concept
Ultrafast Science with SPX
SPX Technical Components
Performance Parameters
R&D Plan

Summary

#### Transverse Rf Chirp Concept<sup>1</sup>

Baseline : 2 MV deflecting voltage, ~2ps (FWHM) x-ray pulses Input Coupler LOM **HOM Dampers** Damper RF deflecting cavity RF deflecting cavity Cavity frequency Ideally, second cavity exactly is harmonic h of cancels effect of first if phase ring rf frequency advance is n\*180 degrees: 'outside" users nominally unaffected Radiation from Pulse can be sliced tail electrons or compressed with asymmetric cut Radiation from crystal head electrons Undulator Future Goal: 4 MV deflecting voltage, ~1ps (FWHM) x-ray pulses

<sup>1</sup> A. Zholents et al., NIM A 425, 385 (1999).

Status of SPX, March 30, 2011, A. Nassiri

#### **Ultrafast Science with SPX**

SPX is a new generation of ultrafast x-ray source that can probe matter with nanometer and picosecond precision. World's first high average, high repetition rate, tunable, polarized ultrafast x-ray source for a variety of applications in chemistry, materials, atomic & molecular physics and biology

- It enables time-resolved x-ray scattering at the picosecond timescale while retaining the powerful characteristics of synchrotron radiation.
- Time-resolved diffraction. Understanding <sup>107</sup> and controlling energy and heat transfer in <sup>9</sup> thin films. Understanding carrier and lattice <sup>9</sup> relaxation processes after photo excitation.<sup>9</sup> 10<sup>5</sup>
- Picosecond timescale is ideal to probe dynamics in nano-scale systems which evolve at the speed of sound ~1nm/ps.



### **SPX Technical Components**

- Two cryomodules, each with 4 SC deflecting cavities equipped with:
  - Tuner with warm motor and piezo
  - LOM/HOM dampers
  - Precision cavity alignment



Peak power density: 42 W / cm<sup>3</sup>

Precision alignment concept



Nitronic rods for fixed "X" direction

High precision actuators each end of cavity for vertical "Y" motion (1mm)

Mark I ("baseline")

Mark II ("alternate")



Status of SPX , March 30, 2011, A. Nassiri

21mm x 120mm

SPX deflecting cavities, THP212,

olume Loss Den

. 2373e+00 . 9725e+00 . 7077e+00 . 4429e+00

2.1188e+80 1.8540e+80 1.5892e+80 1.3244e+80 1.0596e+80 7.9479e+80 5.2998e+80 2.6517e+80 3.6564e+80

**G.Waldschmidt** 

# **SPX Technical Components (2)**

A cryoplant for 2.0K operation

| Quantity                                    | Value                           |
|---------------------------------------------|---------------------------------|
| Refrigeration @ 2.0K (4 MV)                 | 320 W with 100% capacity margin |
| Refrigeration @ 5-8 K for dist.& intercepts | 500 W                           |
| LN2 is planned for 80K shield cooling       | 4 kW                            |

- High-power rf system based on 10-kW CW klystrons
  - One klystron per cavity
- Low-level rf system capable of delivering required amplitude and phase stability
  - Primarily regulate the amplitude and phase of the SPX deflecting cavity fields
  - Engineering and production of LLRF system for 8 cavity installation
- Diagnostics
  - Measure beam tilt inside and outside SPX zone
  - Measure beam arrival time with respect to a phase reference and provide this information to low-level rf controls.
  - Cerenkov detectors/loss monitors to protect cavities

X-ray detector is the key to Beam Arrival Time array tilt monitor Need fast ( sub-ns rise time, low-intensity dependence – Diamond a good candidate Initial test with polycrystalline diamond detector - rise time ~160 ps

Status of SPX , March 30, 2011, A. Nassiri

LLRF4 based Receiver/Controller Chassis

Diamond

Detector

X-rays strike

copper beam dump



rise time



## Single-Bunch and Multi-Bunch Stability Result<sup>1</sup>

- SPX system in 24-singlets (4 mA per bunch) does not degrade the performance of single particle dynamics.
- Q's of longitudinal and transverse planes are very low (20 -800)
- Based on current operations coherent damping is applicable here
- Transverse plane would be stable in baseline number of cavities (8)
- Recent work demonstrates the possibility of "adjusting" hybrid pattern to reduce the worst-case growth rate

| Plane        | Growth Rate               | Damping Rate             |                      |         |
|--------------|---------------------------|--------------------------|----------------------|---------|
|              |                           | Synchrotron<br>Radiation | Coherent             | Comment |
| Longitudinal | <b>30 s</b> <sup>-1</sup> | 208 s <sup>-1</sup>      | Not applicable       | Stable  |
| Horizontal   | 180 s <sup>-1</sup>       | 104 s <sup>-1</sup>      | >600 s <sup>-1</sup> | Stable  |
| Vertical     | 125 s <sup>-1</sup>       | 104 s <sup>-1</sup>      | >600 s <sup>-1</sup> | Stable  |



Status of SPX . March 30, 2011, A. Nassiri



0.5  $\mu$ s train

186 mA in eight septuplets (8x7)

1.594  $\mu$ s gaps

<sup>1</sup> L. Emery, Y-C. Chae

## **Cavity Impedance Budget**



#### **Tolerances from Beam Dynamics Simulations**<sup>1</sup>

| Parameter                                                  | Baseline  | Future<br>Goal |
|------------------------------------------------------------|-----------|----------------|
| Common mode amplitude variation <sup>1</sup>               | <1%       | <1%            |
| Common mode phase variation <sup>2</sup>                   | <4.8 deg  | <4.8 deg       |
| Voltage amplitude mismatch between cavities <sup>3</sup>   | <0.8%     | <0.4%          |
| Voltage phase mismatch error between cavities <sup>4</sup> | <0.14 deg | <0.07 deg      |

<sup>1</sup> Keep intensity and pulse length variation under 1% rms.

<sup>2</sup> Keep intensity variation under 1% rms.

- <sup>3</sup>Keep rms emittance variation outside SPX region under 10% of nominal 35 pm.
- <sup>4</sup> Keep rms beam motion outside of SPX region under 10% of beam size/divergence.



#### Common Mode Strategy

- Main RF used to lock beam to MO via Beam Arrival Time diagnostic
- BPM Array 1 corrects for common mode phase error < 100 Hz</li>
- Deflected Tilt Monitor corrects for common mode amp error < 100 Hz</li>
- SPX RF system responsible for noise spectrum > 10Hz
- Differential Mode Strategy
  - Orbit Feedback (BPM Array 2) controls differential phase error < 100 Hz</li>
  - Residual Tilt Monitors control differential amp error < 100 Hz</li>
  - SPX RF system responsible for noise spectrum > 10Hz





## **R&D Status**

Baseline cavity tests performed at JLab. It meets rf performance with 10% safety margin on deflecting voltage.

#### Contributed talk, WEOBS13, H. Wang

- Fabrication of the "alternate" cavity is underway at JLab.
- Design of a cryomodule and ancillary components including dampers, tuner, precision alignment system have started.
- Collaborative work with LBNL on the development of low-level rf controllers and precision timing and synchronization system have started.

- On-going effort on lattice development, beam dynamics, collective effects
- Installation in ring of a 2-cavity cryomodule is planned for a single sector test.
  - Address risks that cannot be addressed by off-line experiments
  - Chirp is sufficiently well-defined to allow proof-of- concept for x-ray pulse length reduction.



## Summary

- Short x-ray pulse generation using SC rf deflecting cavities gives much higher average flux compared to other schemes:
  - Laser slicing
  - Low- $\alpha$  operation
  - RF phase modulation
  - Harmonic cavity
- SPX should provide ~2 ps FWHM or less x-ray pulses to
  - 3 insertion devices and 2 bending magnets beam lines
- Single-sector test should allow us to have an early look at chirped x-rays and address additional risks.
- R&D tasks are progressing well.
- Collaboration with JLab and LBNL is off to a great start.
- We are very excited and looking forward to proof-of-concept demonstration in 2013.

### **Acknowledgements**

Thanks to the following people for their contributions:

JLab: G. Cheng, C. Ciovati, B. Clements, J. Henry, P. Kneisel,

- P. Kushnick, K. Macha, J. Mammosser, R. A. Rimmer,
- G. Slack, L. Turlington, H. Wang
- LBNL: J. Byrd, L. Doolittle, G. Haung
- SLAC: C-K. Ng, Z. Li
- ANL: N. Arnold, T. Berec, B. Berg, M. Borland, B. Brajuskovic, D. Bromberek, Y-C. Chae, E. Dufresne, L. Emery, G. Decker,
- J. Fuerst, A. Grelick, D. Horan, B. Laird, F. Lenkszus, Y. Li,
- R. Lill, J. Liu, V. Sajaev, T. Smith, G. Waldschmidt, G. Wu,

B. Yang, A. Zholents