Author: Ankenbrandt, C.M.
Paper Title Page
MOP038 Non-Magnetic Momentum Spectrometer Based on Fast Time-of-Flight System 169
 
  • R.J. Abrams, C.M. Ankenbrandt, G. Flanagan, S.A. Kahn, M. Notani, T.J. Roberts
    Muons, Inc, Batavia, USA
  • H.J. Frisch
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
 
  Funding: Supported in part by SBIR Grant DE-SC0005445
A new generation of large-area, low cost time-of-flight detectors with time resolutions ≤ 10 ps and space resolutions ≤ 1 mm is being developed for use in nuclear and particle physics experiments, as well as for medical and industrial applications. Such detectors can serve as the basis for measuring momenta without requiring measurement of curvature in magnetic fields. Factors affecting measurement accuracy and simulation results are presented.
 
 
MOP040 Fast Time-of-Flight System for Muon Cooling Experiments 172
 
  • R.J. Abrams, C.M. Ankenbrandt, G. Flanagan, S.A. Kahn, M. Notani, T.J. Roberts
    Muons, Inc, Batavia, USA
  • H.J. Frisch
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
 
  Funding: Supported in part by SBIR Grant DE-SC0005445.
A new generation of large-area, low cost time-of-flight detectors with time resolutions ≤ 10 ps and space resolutions ≤ 1 mm is being developed for use in nuclear and particle physics experiments, as well as for medical and industrial applications. Such detectors are being considered for use in muon cooling channel tests. Designs and fabrication of prototype planes and associated readout electronics are described. Results of simulations of time and space resolutions are presented.
 
 
MOP047 Helical Channels with Variable Slip Factor for Neutrino Factories and Muon Colliders 187
 
  • C. Y. Yoshikawa, C.M. Ankenbrandt
    Muons, Inc, Batavia, USA
  • D.V. Neuffer, K. Yonehara
    Fermilab, Batavia, USA
 
  Funding: Supported in part by DOE SBIR grant DE-SC0002739.
In order to realize a muon collider or a neutrino factory based on a muon storage ring, the muons must be captured and cooled efficiently. For a muon collider, the resulting train of bunches should be coalesced into a single bunch. Design concepts for a system to capture, cool, and coalesce a muon beam are described here. In particular, variants of a helical channel are used, taking advantage of the ability to vary the slip factor and other parameters of such a channel. The cooling application has been described before; this paper reports recent studies of a system that includes two novel concepts to accomplish capture and coalescing via a slip-controlled helical channel.
 
 
TUP016 Beam Brightness Booster with Charge Exchange Injection and Superintense Circulating Beams Production 844
 
  • V.G. Dudnikov, C.M. Ankenbrandt
    Muons, Inc, Batavia, USA
 
  An increase of intensity and brightness of proton beam by means of charge exchange injection and devices developed for this experiment are considered. First observation of e-p instability, explanation and damping by feed back are discussed. Discovery of “cesiation effect” leading to multiple increase of negative ion emission from gas discharges and development of surface-plasma sources for intense high brightness negative ion beams production are considered. By these developments were prepared a possibility for production of stable “superintense” circulating beam with intensity and brightness fare above space charge limit. A beam brightness booster (BBB) for significant increase of accumulated beam brightness is discussed. New opportunity for simplification of the superintense beam production is promised by developing of nonlinear close to integrable focusing system with broad spread of betatron tune and the broad bend feed back system for e-p instability suppression.  
 
WEP249 Intense Muon Beams for Experiments at Project X 1951
 
  • C.M. Ankenbrandt, R.P. Johnson, C. Y. Yoshikawa
    Muons, Inc, Batavia, USA
  • V.S. Kashikhin, D.V. Neuffer
    Fermilab, Batavia, USA
  • J. Miller
    BUphy, Boston, Massachusetts, USA
  • R.A. Rimmer
    JLAB, Newport News, Virginia, USA
 
  Funding: Supported in part by DOE SBIR grant DE-SC00002739
A coherent approach for providing muon beams to several experiments for the intensity-frontier program at Project X is described. Concepts developed for the front end of a muon collider/neutrino factory facility, such as phase rotation and ionization cooling, are applied, but with significant differences. High-intensity experiments typically require high-duty-factor beams pulsed at a time interval commensurate with the muon lifetime. It is challenging to provide large RF voltages at high duty factor, especially in the presence of intense radiation and strong magnetic fields, which may preclude the use of superconducting RF cavities. As an alternative, cavities made of materials such as ultra-pure Al and Be, which become very good - but not super - conductors at cryogenic temperatures, can be used.
 
 
THP025 A Cooled Generalized Multiple Target System to Create Positrons for a Compact Tunable Intense Gamma Ray Source 2169
 
  • C. Y. Yoshikawa, C.M. Ankenbrandt
    Muons, Inc, Batavia, USA
  • A. Afanasev
    Hampton University, Hampton, Virginia, USA
  • D.V. Neuffer
    Fermilab, Batavia, USA
 
  Funding: This work was funded by Pacific Northwest National Laboratory which is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.
A compact tunable gamma ray source has many potential uses in medical and industrial applications. One novel scheme to produce an intense beam of gammas relies on the ability to create a high flux of positrons, which are produced by an electron beam on a high Z target. We present an innovative system which allows for a nearly arbitrary targeting geometry that supports multiple targets, whose optimal design is allowed to be driven by the physics of the positron production processes, while naturally supporting cooling of the targets.