FR1  —  Friday Oral Session FR1   (03-Oct-08   08:30—10:30)

Chair: H. Weise, DESY, Hamburg

Paper Title Page
FR101 8-GeV C-Band Accelerator Construction for XFEL/SPring-8 1090
 
  • T. Inagaki
    RIKEN/SPring-8, Hyogo
 
 

The 8 GeV C-band electron linear accelerator is under construction at the SPring-8 site aiming at generating an FEL X-ray beam in 2010. C-band accelerator technology has been developed initially at KEK for the e+e- linear collider project, and employed at the XFEL project in Japan. Since C-band generates a high gradient acceleration field as high as 35 MV/m, the total length of the accelerator fits within 400 m, including the injector and three bunch compressors. C-band uses normal conducting rf technology, thus it runs in pulse mode at 60 Hz, which is well suited to XFEL operation and is less expensive. The talk will cover the current status of the XFEL project and hardware production.

 

slides icon

Slides

 
FR102 Commissioning of the LCLS Linac 1095
 
  • H. Loos, R. Akre, A. Brachmann, F.-J. Decker, Y.T. Ding, D. Dowell, P. Emma, J.C. Frisch, A. Gilevich, G.R. Hays, P. Hering, Z. Huang, R.H. Iverson, C. Limborg-Deprey, A. Miahnahri, S. Molloy, H.-D. Nuhn, J.L. Turner, J.J. Welch, W.E. White, J. Wu
    SLAC, Menlo Park, California
  • D.F. Ratner
    Stanford University, Stanford, Califormia
 
 

Funding: This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515
Construction of the Linac Coherent Light Source (LCLS) X-ray free electron laser at the Stanford Linear Accelerator Center (SLAC) is nearing completion. A new injector and upgrades to the existing accelerator were installed in two phases in 2006 and 2007. We report on the commissioning of the injector, the two new bunch compressors at 250 MeV and 4.3 GeV, and transverse and longitudinal beam diagnostics up to the end of the existing linac at 13.6 GeV. The commissioning of the new transfer line from the end of the linac through the undulator beam line to the main dump is scheduled to start in January 2009 and for the undulator magnets in March 2009 with first light to be expected by May 2009.

 

slides icon

Slides

 
FR103 Operation of FLASH as an FEL User Facility 1100
 
  • K. Honkavaara
    DESY, Hamburg
 
 

FLASH, the FEL user facility at DESY, is operated with an electron beam energy up to 1 GeV corresponding to a photon wavelength down to 6.5 nm. The full year 2008 is dedicated to beam operation: about half of the time is scheduled for FEL users, and the rest for accelerator and FEL physics studies. Operational experience gathered at FLASH is very important not only for further improvements of the FLASH facility itself, but also for the European XFEL and for the ILC R&D effort. This talk reports our experience operating FLASH as a user facility. Failure statistics are included as well.

 

slides icon

Slides

 
FR104 Review of Advanced Laser Technologies for Photocathode High-Brightness Guns 1105
 
  • H. Tomizawa, H. Dewa, H. Hanaki, A. Mizuno, T. Taniuchi
    JASRI/SPring-8, Hyogo-ken
 
 

I developed a 3-D pulse shaping system in UV as an ideal laser for yearlong stable photoinjector. At SPring-8, the laser's pulse-energy stability has been improved to 0.7~1.4% at the UV (263 nm) under the laser environmental control included humidity. In addition, the ideal spatial and temporal profiles of an UV-laser pulse are essential to suppress emittance growth in an rf gun. I apply a deformable mirror that automatically shapes the spatial profile with a feedback routine, based on a genetic algorithm, and a pulse stacking system consisting of three birefringence Alpha-BBO crystal rods for temporal shaping at the same time. The 3D shape of the laser pulse is spatially top-hat (flattop) and temporally a square stacked chirped pulse. Using a 3D-shaped laser pulse with diameter of 0.8 mm on the cathode and pulse duration of 10 ps (FWHM), we obtain a normalized emittance of 1.4 pi mm mrad with a beam energy of 26 MeV. To keep the mirror away from beam axis, I developed a new hollow laser incidence with an axicon final focusing. Furthermore, I am developing a laser-induced Schottky-effect-gated photocathode gun using Z-polarization of the laser source with the hollow incidence.

 

slides icon

Slides

 
FR105 Billion Particle Linac Simulations for Future Light Sources 1110
 
  • J. Qiang, R.D. Ryne, M. Venturini, A. Zholents
    LBNL, Berkeley, California
 
 

Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC03-76SF00098.
In this paper, we will report on a billion macroparticle simulation of beam transport in a free electron laser (FEL) linac for future light source applications. The simulation includes a self-consistent calculation of 3D space-charge effects, short-range geometry wakefields, longitudinal coherent synchrotron radiation (CSR) wakefields, and detailed modeling of rf acceleration and focusing. We will discuss the needs and the challenges for such large-scale simulation. Application to the study of microbunching instability in the FEL linac will also be presented.

 

slides icon

Slides