Proton and Ion Accelerators and Applications

2D - DTLs (Room Temperature)

Paper Title Page
MOP008 Development of a Cell-Coupled Drift Tube Linac (CCDTL) for Linac4 67
 
  • M. Vretenar, Y. Cuvet, G. De Michele, F. Gerigk, M. Pasini, S. Ramberger, R. Wegner
    CERN, Geneva
  • E. Kenzhbulatov, A. Kryuchkov, E. Rotov, A.G. Tribendis
    BINP SB RAS, Novosibirsk
  • M.Y. Naumenko
    RFNC-VNIITF, Snezhinsk, Chelyabinsk region
 
 

The 352 MHz CCDTL will accelerate the Linac4 beam from 50 to 102 MeV. It will be the first CCDTL used in a proton linac. Three short DTL tanks, each having two drift tubes, are connected by coupling cavities and form a chain of 5 resonators operating in the stable π/2 mode. The CCDTL section is made of 7 such chains, each fed by a 1.3 MW klystron. Focusing quadrupoles are placed between tanks, easing their alignment with respect to a conventional DTL thus making the structure less sensitive to manufacturing errors. In order to validate the design and to develop the production technology, two prototypes have been constructed and successfully tested. The first prototype, built at CERN, consists of two half-cavities and one coupling cell, whereas the second, with two full cavities and one coupling cell, was built at VNIITF and BINP in Russia in the frame of an R&D contract funded by the ISTC Organisation. Both prototypes have been tested at CERN slightly beyond their nominal power level, at the design duty cycle of 10%. In this paper we present the results of high-power tests, the results of the technological developments prior to production, and the final design of the CCDTL.

 
MOP046 Commissioning of the New GSI-Charge State Separator System for High Current Heavy Ion Beams 175
 
  • W. Barth, L.A. Dahl, P. Gerhard, L. Groening, M. Kaiser, S. Mickat
    GSI, Darmstadt
 
 

A dedicated charge separator system is now installed in the transfer line to the GSI-synchrotron SIS18. In former times charge separation was performed with a single 11 degree dipole magnet after a 25 m beam transport section. This was not adequate to meet the requirements during high current operation for FAIR: it only allows for charge state separation of low intensity and low emittance beams. With the new compact charge separator system emittance blow up and unwanted beam losses for high intensity beam operation will be avoided. Additionally a new beam diagnostics test bench is integrated. With this the beam parameters (ion current, beam profile, beam position, transversal emittance, bunch structure and beam energy) for the injection into the SIS18 can be measured in parallel to the routine operation in the transfer line. Results of the commissioning with high intensity argon beams as well as with an uranium beam will be reported.

 
MOP047 Quadrupole Magnet Development for 132 MeV DTL of CSNS 178
 
  • Y. Cheng, S. Fu, K.Y. Gong, Z.R. Sun, X. Yin
    IHEP Beijing, Beijing
 
 

In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 132 MeV has been designed with 1.05% duty, consisting of 7 tanks with a total length of approximately 59.6 m. Currently, R&D work has focused on Tank 1, which will have 61 drift-tubes (DT) each housing an electro-magnet quadrupole (EMQ). Some EMQs with SAKAE coil have been fabricated and are under rigorous magnetic measurements by means of Hall probe, single stretched wire, rotating coil in order to verify the design specifications and fabrication technology. Magnetic measurements on the EMQs with iron cores made from the electrical-discharge machining (EDM) and the stacking method will be compared and discussed. Work has been implemented to reduce the alignment discrepancies between the geometric center of the DT and magnetic center of EMQ to within ± 50 μm.

 
MOP048 DTL Tank Development of 132 MeV Linac for CSNS 181
 
  • Z.R. Sun, S. Fu, K.Y. Gong, J. Peng, X. Yin
    IHEP Beijing, Beijing
 
 

A conventional 324 MHz DTL has been designed for China Spallation Neutron Source (CSNS) to accelerate H- ion from 3 MeV to 132 MeV. There are 7 tanks in the DTL and currently the R&D of tank-1 is under proceeding. In our design, Tank-1 has a tilt field distributed partially in order to obtain most effective energy gain and low Kilpatric parameter. The tank has been fabricated and the manufacture technique was verified by the measurement results. Because of the difficulty of tuning a partial tilt field distribution, a complex rf measuring and tuning procedure are introduced. The analysis on calculating the perturbation in a new method is also proposed.

 

slides icon

Slides

 
MOP049 Drift Tube Linac Design and Prototyping for the CERN Linac4 184
 
  • S. Ramberger, N. Alharbi, P. Bourquin, Y. Cuvet, F. Gerigk, A.M. Lombardi, E.Zh. Sargsyan, M. Vretenar
    CERN, Geneva
  • A. Pisent
    INFN/LNL, Legnaro, Padova
 
 

The Drift Tube Linac (DTL) for the new linear accelerator Linac4 at CERN will accelerate H- ion beams of up to 40mA average pulse current from 3 to 50MeV. It is designed to operate at 352.2MHz and at duty cycles of up to 10%, if required by future physics programmes. The accelerating field is 3.2MeV/m over the entire length. Permanent magnet quadrupoles are used as focusing elements. The 3 DTL cavities consist of 2, 4 and 4 segments of about 1.8m each, are equipped with 35, 41 and 29 drift tubes respectively, and are stabilized with post-couplers. Several new features have been incorporated in the basic design. The electro-magnetic design has been refined in order to reduce peak field levels in critical areas. The mechanical design aims at reducing the complexity of the mechanical structure and of the adjustment procedure. Drift tubes and holders on the tanks that are machined to tight tolerances do not require adjustment mechanisms like screws or bellows for drift tube positioning. A scaled cold model, an assembly model and a full-scale prototype of the first half tank have been constructed to validate the design principles. The results of metrological and rf tests are presented.

 
MOP050 Development of Investigations on the MILAC Heavy Ion Linear Accelerator 187
 
  • A.P. Kobets, V.A. Bomko, O.F. Dyachenko, M.S. Lesnykh, K.V. Pavlij, Z.O. Ptukhina, V.N. Reshetnikov, S.S. Tishkin, A.M. Yegorov, A.V. Zabotin, B.V. Zajtsev, V.G. Zhuravlev, B.N. Zinchenko
    NSC/KIPT, Kharkov
 
 

Experiments with heavy ion beams accelerated to an energy of 8.5 MeV/u as well as the work at developing new methods of acceleration and upgrading of accelerating structures are carried on at the Kharkov heavy-ion linear accelerator MILAC. The accelerating H-type structure with drift tubes of interdigital type (IH-structure) has been introduced in the main section and two pre-stripping sections of the MILAC accelerator. New original methods of tuning developed at MILAC have enabled the formation of uniform distribution of the accelerating field along the whole length of the accelerating structure. The introduction of IH accelerating structures of various modifications at the MILAC accelerator substantially extends the scientific and applied ranges of research. It involves experimental studies with heavy ions beams for production of track-etched membranes, generation of unique radionuclides, developments of proton and ion therapy, studies of radiation characteristics of constructional materials for nuclear engineering, investigations into the processes of fusion-fission of superheavy nuclei, and many other problems of nuclear physics.

 
MOP051 Linac Operations at Fermilab 190
 
  • L.J. Allen
    Fermilab, Batavia
 
 

Funding: Fermi Research Alliance under contract with the US Department of Energy
In response to increasing beam intensity demands, the Fermilab 400 MeV Linac is operating at high intensity and higher repetition rates than were imagined when it was designed. This is happening at a time when maintenance time is at a premium. This has had an effect on Linac operation, tuning and reliability. Changes in tuning and equipment being made to accommodate the current running scenario along with reliability data will be presented.