Electron Accelerators and Applications

1B - Energy Recovery Linacs

Paper Title Page
TUP022 RF Control and Longitudinal Beam Stability in Energy Recovery Linacs 440
  • A. Neumann, M. Abo-Bakr, J. Knobloch
    BESSY GmbH, Berlin

Funding: Work partially funded by the European Commission in the Sixth Framework Program, contract no. 011935 EUROFEL-DS5, BMBF and Land Berlin.
Most concepts for next generation light sources base on linear accelerators (linac) due to their excellent beam properties. In case of high electron energies and extreme average currents Energy Recovery Linacs (ERL) are mandatory. In this paper we investigate the rf field stability in a generic superconducting, cw operated ERL. By using rf control cavity simulations and longitudinal beam dynamics the influence of rf field stability on the energy recovery process is analyzed. Since the ERL aims for a small net beam loading cavities are operated at a high loaded quality factor. Therefore they are operated at a low bandwidth and are very susceptible to microphonics detuning. We considered the field stability under the influence of limited rf power, mechanical cavity detuning, varying beamloading, synchronization deviations and varying bunch parameters at injection into the linac. The resulting temporal and energy jitter at the linac end will be transformed in the return arc and leads to rf phase deviations on the return path. Implications of varying beam loading on the ERL performance are examined.

TUP023 Optimization of Lattice for an ERL Upgrade to the Advanced Photon Source 441
  • M. Borland, V. Sajaev
    ANL, Argonne

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
An Energy Recovery Linac (ERL) is one possibility for an upgrade to the Advanced Photon Source (APS). In addition to the linac itself, our concept involves a large turn-around arc (TAA) at 7 GeV that would eventually accommodate many new beamlines. Previously, we based the TAA design on isochronous triple-bend archromat (TBA) cells, since these are expected to provide some immunity to the effects of coherent synchrotron radiation. In the present work, we compare the previous TBA-based design to a new design based on double-bend achromat cells, in terms of emittance growth, energy spread growth, and energy recovery. We also explore the trade-off between optimization of the beta functions in the straight sections and minimization of emittance growth.

TUP024 Growth of Density Modulations in an Energy Recovery Linac Light Source due to Coherent Synchrotron Radiation and Longitudinal Space Charge 444
  • M. Borland
    ANL, Argonne

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
An Energy Recovery Linac (ERL) is one possibility for an upgrade to the Advanced Photon Source (APS). Such a system involves not only a long linac, but also long transport lines with many dipole magnets. Since the bunches are short, we may expect that coherent synchrotron radiation and longitudial space charge will have an affect on the beam dynamics. Although previous studies have shown minimal effects for an initially quiet beam distribution, the possibility of a microbunching instability seeded by initial density modulation must be evaluated. We present and discuss simulation results showing the growth of density modulations in two possible lattices for an ERL upgrade of the APS.

TUP026 Exploring Benefits of Using RF Deflection for Short X-Ray Pulse Generation for an Energy-Recovery Linac Upgrade to the Advanced Photon Source 447
  • V. Sajaev, M. Borland
    ANL, Argonne

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
One of the possible options for the Advanced Photon Source (APS) upgrade is an energy-recovery linac (ERL). In its main operating mode, the ERL bunch length would be two picoseconds. Even though this bunch length is already a factor of 20 shorter than the present APS bunch length, some experiments might require shorter X-ray pulses. For the APS storage ring, we plan to use an rf deflection technique* to generate one-picosecond X-ray pulses. In this approach, an rf cavity is used to deliver longitudinally dependent vertical kick to the electron beam and then a pair of slits is used to slice vertically streaked X-ray beam. We investigate the possibility and benefits of utilizing this technique to generate shorter X-ray pulses at the ERL.

*A. Zholents, et al., Nucl. Instr. and Meth. A 425 (1999) 385.

TUP027 Simulation of Linear Lattice Correction of an Energy-Recovery Linac Designed for an APS Upgrade 450
  • V. Sajaev
    ANL, Argonne

Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
An energy recovery linac (ERL) is one of the candidates for an upgrade of the Advanced Photon Source (APS). In addition to the APS ring and full-energy linac, our design also includes a large turn-around arc that could accommodate new X-ray beamlines as well. In total, the beam trajectory length would be close to 3 km. The ERL lattice has a strong focusing to limit emittance growth, and it includes strong sextupoles to keep beam energy spread under control and minimize beam losses. As in storage rings, trajectory errors in sextupoles will result in lattice perturbations that would affect delivered X-ray beam properties. In storage rings, the response matrix fit method is widely used to measure and correct linear lattice errors. Here, we explore the application of the method to the linear lattice correction of ERL.

TUP028 Status of High Current R&D Energy Recovery Linac at Brookhaven National Laboratory 453
  • A. Kayran, D. Beavis, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K.A. Drees, G. Ganetis, D.M. Gassner, J.G. Grimes, H. Hahn, L.R. Hammons, A. Hershcovitch, H.-C. Hseuh, A.K. Jain, R.F. Lambiase, D.L. Lederle, V. Litvinenko, G.J. Mahler, G.T. McIntyre, W. Meng, T.C. Nehring, B. Oerter, C. Pai, D. Pate, D. Phillips, E. Pozdeyev, T. Rao, J. Reich, T. Roser, T. Russo, Z. Segalov, A.K. Sharma, J. Smedley, K. Smith, T. Srinivasan-Rao, J.E. Tuozzolo, G. Wang, D. Weiss, N. Williams, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • H. Bluem, M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Medford, NY
  • J.R. Delayen, L.W. Funk, H.L. Phillips, J.P. Preble
    JLAB, Newport News, Virginia

Funding: Work performed under contract No. DE-AC02-98CH10886 with the auspices of the DoE of United States.
An ampere class 20 MeV superconducting Energy Recovery Linac (ERL) is under construction at Brookhaven National Laboratory (BNL) for testing concepts for high-energy electron cooling and electron-ion colliders. One of the goals is to demonstrate an electron beam with high charge per bunch (~5 nC) and extremely low normalized emittance (~5 mm-mrad) at an energy of 20 MeV. Flexible lattice of ERL loop provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense cw e-beam. The superconducting 703 MHz rf photoinjector is considered as an electron source for such a facility. At first we develop the straight pass (gun – 5 cell cavity – beam stop) test for the SRF Gun performance studies. Then the novel injection line concept of emittance preservation at the lower energy will be tested at this ERL. In this paper we present the status and our plans for construction and commissioning of this facility.

WE101 Energy Recovered Linacs 688
  • G.A. Krafft
    JLAB, Newport News, Virginia

Funding: Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
In the last decade, stimulated by the success of the energy recovered free electron lasers, many projects have been initiated exploring the applications and limitations of beam energy recovery in recirculated linear accelerators (linacs). In this talk the performance of many existing energy recovered linacs is briefly reviewed. Looking forward, potential applications of energy recovered linacs such as

  1. recirculated linac light sources,
  2. high energy beam electron cooling devices, and
  3. electron beam sources for high energy colliders have been pursued with varying degrees of effort.
The types of new technology that must be developed for applications, and more broadly, some of the open issues regarding this technology, are discussed in detail. The talk concludes with some thoughts on the future developments in this important, and expanding field.


slides icon


WE103 First Results from the ERL Prototype (ALICE) at Daresbury 694
  • D.J. Holder
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire

The energy recovery linac prototype at Daresbury is now called ALICE (Accelerators and Lasers In Combined Experiments). This paper presents the results obtained in the past year, including the second (fourth) period of gun commissioning. Following the completion of gun commissioning in November 2007, the dedicated gun diagnostic line was removed and the electron gun attached to the booster cavity and hence the rest of the machine. The paper outlines some of the challenges experienced during the commissioning of both the photoinjector system and the superconducting cavities and presents the current status of the project as well as the very latest results from commissioning during the summer of 2008.


slides icon


WE104 First Tests of the Cornell University ERL Injector 699
  • B.M. Dunham, I.V. Bazarov, S.A. Belomestnykh, M.G. Billing, E.P. Chojnacki, Z.A. Conway, J. Dobbins, R.D. Ehrlich, M.J. Forster, S.M. Gruner, G.H. Hoffstaetter, V.O. Kostroun, Y. Li, M. Liepe, X. Liu, D.G. Ouzounov, H. Padamsee, D.H. Rice, V.D. Shemelin, C.K. Sinclair, E.N. Smith, K.W. Smolenski, A.B. Temnykh, M. Tigner, V. Veshcherevich, T. Wilksen
    CLASSE, Ithaca, New York

Funding: Work supported by the National Science Foundation under contract PHY 0131508
Cornell University is planning to build an Energy-Recovery Linac (ERL) X-ray facility. The very small electron-beam emittance would produce an X-ray source that is significantly better than any existing storage-ring based light source. One major difference between an ERL and a typical light source is that the final electron beam emittance, and thus the X-ray beam brightness, is determined by the electron injector rather than the storage ring. We are currently constructing and commissioning an injector for an ERL with the goal of demonstrating the low emittances and high beam power required. The injector is designed to accelerate up to 100 mA cw electron bunches of 77 pC/bunch with an energy of 5 MeV (33 mA at 15 MeV) using 1.3 GHz superconducting cavities. A full suite of diagnostics will allow a complete phase space characterization for comparison with simulations and with the requirements. We will describe the current status of the injector along with results, difficulties and challenges to date.


slides icon