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Abstract 
An energy recovery linac (ERL) is a possible candidate 

for an upgrade of the Advanced Photon Source (APS). 
Our ERL design includes full-energy linac, large turn-
around arc that could accommodate new x-ray beamlines, 
and APS itself. In total, the beam trajectory length would 
be close to 3 km. The ERL lattice has a strong focusing to 
limit emittance growth, and it includes strong sextupoles 
to keep beam energy spread under control and minimize 
beam losses. As in storage rings, trajectory errors in 
sextupoles will result in lattice perturbations that would 
affect delivered x-ray beam properties. In storage rings, 
the response matrix fit method is widely used to measure 
and correct linear lattice errors. Here, we explore the 
application of the method to the linear lattice correction of 
ERL. 

INTRODUCTION 
Linear optics measurement and correction using 

response matrix fit is well known and widely used on 
modern circular machines. The purpose of this work is to 
simulate the application of the same method to a non-
closed beamline. 

Theoretically, there is no big difference between 
response matrix measurement for closed and non-closed 
beamlines. The orbit equations are well-known and look 
similar (top equation is for non-closed trajectory and 
bottom is for closed trajectory, θ – is the kick strength): 
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The measured trajectories in both cases depend on beta 
functions and phase advances and therefore could be used 
to derive linear optics. The main practical difference is 
that in the case of non-closed beamline, the response 
matrix is triangular with zeros in the top right triangle. 

SIMULATION DETAILS 
At APS, we have been using response matrix fit method 

for many years [1]. We added an option of working with 
non-closed trajectories to our existing program. From our 
experience, we know that at APS the main source of 
focusing errors are non-zero orbits in sextupoles and we 
also know that the focusing errors from sextupoles cannot 
be precisely represented by nearest quadrupoles [2]. 
Therefore we decided to include sextupole displacements 
in error simulation. The following set of errors was used 
for simulations: 

Table 1: Errors used in Calculations 
Quadrupole gradient error 0.1 % 
Quadrupole tilt 0.001 rad 
Sextupole X and Y displacement 1 mm 
Corrector calibration error 5 % 
Corrector tilt 0.001 rad 
BPM calibration error 2 % 
BPM tilt 0.001 rad 
BPM measurement noise 1 μm 
Sextupole displacements were chosen rather large 

because trajectory errors in sextupoles are defined not by 
the accuracy of sextupole alignment but by the accuracy 
of nearest BPM offset which could be large. The errors 
were generated using Gaussian distribution with 2 sigma 
limit. 

For optics correction simulation we used only APS 
portion of the ERL because the Turn-Around Arc design 
has not been finalized to a level of BPM and corrector 
locations. The lattice of the APS portion is described in 
[3], the lattice functions of one APS sector are presented 
in Figure 1. The main difference from the present APS 
storage ring lattice is zero dispersion in ID straight 
sections to decrease electron beam size dependence on 
energy spread. The APS consists of 40 nearly identical 
sectors. 

 

Figure 1: Lattice functions of one sector of the APS 
portion of the ERL. 

Special attention was paid to the choice of correctors 
used for response matrix measurement in our simulations. 
APS storage ring has 8 correctors and 11 BPMs per 
sectors (in most sectors). Presently, for real measurements 
we use only 27 correctors in each plane (out of 320) 
evenly distributed along the ring and all BPMs. We limit 
the number of correctors in order to save measurement 
time and also to limit the size of the fitting problem. If all 
the correctors were used, the size of the response matrix 
derivative would be 15 Gb, which would be too big. Our 
experience shows that with 27 correctors we still have 
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enough data for an accurate fit. In case of a circular 
machine, the location of correctors used for the response 
matrix measurement is not important as long as they are 
separated by some phase advance. However, the situation 
is different for a non-closed beamline where measured 
trajectory is affected only by elements that are located 
after the steering magnet. Therefore, for a non-closed 
beamline, different steering magnets provide different 
amount of useful information. Obviously, one would want 
to use as many steering magnets in the beginning of the 
beamline as possible while keeping them at some phase 
space distance. For our simulations, we used 27 correctors 
in each plane spread over first six sectors (out of forty) 
and none after that. 

The following procedure was used to simulate the entire 
process of measurement and optics correction (elegant 
[4] was used for all beta function and trajectory 
calculations): 

• elegant parameter file is generated with element 
errors;  

• trajectory is corrected (because the sextupole 
displacements could lead to large trajectory errors) 
using 2 correctors per sector;  

• “measured” response matrix and dispersion are 
calculated on the corrected orbit, response matrix is 
generated from two trajectories for each corrector 
using the same plus-minus delta approach that we use 
in real measurements; 

• response matrix fit is calculated (dispersion 
included); 

• quadrupole gradient errors opposite to those found in 
the response matrix fit are applied to correct the 
optics, and the resulting beta functions are compared 
with the ideal beta functions 

The entire process was run 100 times with different 
error seeds. Figure 2 shows typical beta functions before 
beta function correction. For each case, we have 
calculated relative beta function difference between actual 
and ideal beta functions and its rms value (the rms value 
is calculated using all beta function points along the 
beamline). Figure 3 shows histogram of rms of relative 
beta function errors before correction. Average rms of the 
relative beta function difference over all cases is 0.71 for 
horizontal and 0.47 for vertical plane. 

 CORRECTION RESULTS 
All APS quadrupole magnets have separate power 

supply. Therefore, the straightforward way to correct the 
optics is to apply opposite quadrupole gradients. 
However, this method has some drawbacks that prevent 
us from using it in real life. To achieve the best possible 
response matrix fit, we use as many singular values in 
matrix inversion as possible. This might lead to 
appearance of large quadrupole errors in the solution. 
After we calculated beta functions using quadrupole 
errors from the response matrix fit, we use inverse beta 
function response matrix to correct the difference between 
measured and ideal beta functions. We also adjust the 

number of singular values in this inversion until we get 
satisfactory correction accuracy while still keeping 
quadrupole changes small. This allows us to minimize 
real quadrupole changes during optics correction at APS 
storage ring.  

 

 
Figure 2: Typical beta functions before beta function 
correction. Top left – horizontal, top right – vertical, and 
bottom is dispersion. 

 

Figure 3: Histogram of the relative beta function error rms 
before beta function correction. Histogram is calculated 
over the set of 100 different error seeds. For every seed, 
the relative beta function error was calculated, and then 
rms was calculated using all beta function points along the 
beamline. 

However, these arguments are not important for the 
optics correction simulation here, so we used the 
straightforward approach to keep our simulations simple. 
Figure 4 shows histogram of rms of relative beta function 
errors after correction. Average rms of the relative beta 
function difference over all cases is 0.03 for horizontal 
and 0.02 for vertical plane. Figure 5 shows typical lattice 
functions after correction.  

We can estimate the effect of residual dispersion 
perturbation on the beam size using typical ERL 
parameters: ε=10pm and σE=0.02%. Maximum beam size 
increase at ID location due to energy spread contribution 
using dispersion on Figure 5 (bottom plot) is about 15%. 
If such accuracy of dispersion correction turns out to be 
not satisfactory, it can be corrected separately afterwards 
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since the dispersion (unlike beta functions) can be directly 
measured by scanning beam energy. 

 

Figure 4: Histogram of the relative beta function error rms 
after beta function correction. See Figure 3 for comment on 
plot units. 

 
 

 
Figure 5: Typical beta functions after beta function 
correction. 

One can ask why the correction is not perfect. Two 
reasons are obvious – due to BPM noise the response 
matrix measurement is not accurate and due to the fact 
that the focusing errors come from sextupoles but are 
corrected using quadrupoles in different locations. These 
reasons are likely to explain short-scale perturbations in 
beta functions. But we can also see a long-scale smooth 
variation in the horizontal beta function on Figure 5. The 
reason for that is inaccurate determination of focusing 
errors in the very beginning of the lattice because the first 
quadrupoles and sextupoles have only few trajectories 
going through them. If this argument is true, then the beta 
function variation can be corrected by adjusting initial 
beta functions at the entrance of the lattice. Figure 6 
shows horizontal beta functions that were obtained by 
varying incoming beta function and its slope. A small 
change in initial beta function conditions allows 
correcting the long smooth variation seen on top left plot 
of Figure 5 thus confirming that quadrupole errors in the 
beginning of the beamline were not determined correctly. 
To improve accuracy for first elements of the measured 
beamline, one might use several correctors upstream of 
measured portion of the beamline. 

 

Figure 6: Horizontal beta function with adjusted initial 
conditions (to be compared with the top plot of Figure 5). 
A step change at the last 5 sectors is due to sector design 
difference. 

During our simulations, we have also found that if the 
focusing errors of the lattice are large enough, sometimes 
the response matrix fit does not converge because the 
initial approximation (ideal lattice) is too far from the 
lattice with errors. We have tested the following 
procedure that helps in case of convergence problem: split 
lattice in pieces and perform response matrix fit piece by 
piece (not necessarily to be done to a very accurate level) 
and apply corrections from piece by piece solutions. After 
this step, the new lattice with errors is closer to the initial 
lattice and therefore can be solved without problems. This 
piece by piece approach will probably have to be used 
anyway when correcting optics of the entire ERL just to 
avoid long measurements and huge matrices. We have 
tested and confirmed that one can measure and correct 
only a part of the non-closed beamline. 

CONCLUSION 
We have simulated optics correction for non-closed 

beamline using response matrix fit. As example we used 
suggested APS lattice in ERL mode. We have found that 
response matrix fit can be used to measure and correct 
linear lattice successfully. We have confirmed that one 
can measure and correct only a part of non-closed 
beamline which will be useful for large ERLs. 

Author would like to thank M. Borland for useful 
discussions. 
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