A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sakamoto, Y.

Paper Title Page
WE204 IH-DTL as a Compact Injector for a Heavy-Ion Medical Synchrotron 715
 
  • Y. Iwata, T. Fujisawa, S. Hojo, N. Miyahara, T.M. Murakami, M. Muramatsu, H. Ogawa, Y. Sakamoto, S. Yamada, K. Yamamoto
    NIRS, Chiba-shi
  • T. Fujimoto, T. Takeuchi
    AEC, Chiba
  • T. Mitsumoto, H. Tsutsui, T. Ueda, T. Watanabe
    SHI, Tokyo
 
 

An interdigital H-mode structure drift tube linac (IH-DTL) with alternating phase focusing (APF) has been developed downstream of a 4-vane type RFQ linac at the National Institute of Radiological Sciences as a compact injector for a heavy-ion medical synchrotron. The rf frequency of both linacs is 200 MHz, and the total length of the two linacs is less than 6 m. They can accelerate heavy ions having a charge to mass ratio of 1/3 up to 4 MeV/u. The accelerated current of 12C4+ is as high as 380 electric μA, and beam transmission through the APF IH-DTL is better than 96%. This compact injector-linac scheme might give a possible solution for a compact cancer therapy facility with heavy-ion beams.

 

slides icon

Slides

 
TUP029 Electron Linac Based Coherent Radiation Light Source Project at OPU 456
 
  • S. Okuda, T. Kojima, Y. Sakamoto, R. Taniguchi
    Osaka Prefecture University, Sakai
 
 

The coherent synchrotron and transition radiation from electron bunches of a linear accelerator (linac) has continuous spectra in a submillimeter to millimeter wavelength range at relatively high peak-intensities. This light source has been applied to absorption spectroscopy by the authors for various kinds of matters with relatively strong light absorbance such as water and aqueous solutions. The other important characteristics of the coherent radiation are picosecond pulsed light and the high peak intensity of the electric field which can be introduced into matters. In our new project the light source using the pulsed coherent synchrotron and transition radiation will be developed by using the electron beams of a 18 MeV S-band electron linac at Osaka Prefecture University (OPU). The pulse shape of the radiation has been evaluated from the shape of the electron bunch. The system of the light source has been optimized and is under construction. The light source will be applied to the pulsed excitation of matters and to the pump-probe experiment using the electron beam and the coherent radiation.