A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ikegami, M.

Paper Title Page
MO201 Progress in the Beam Commissioning of J-PARC Linac and its Upgrade Path 16
 
  • M. Ikegami
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
 

The beam commissioning of J-PARC linac has been started since November 2006, and the initial commissioning has been completed in September 2007. Since then, the linac beam has been supplied to the succeeding RCS (Rapid Cycling Synchrotron) for its commissioning with occasional linac beam studies for finer tuning. The emphasis of the linac tuning has been shifted to the characterization and stabilization of the beam parameters, and better beam availability has gradually been required for the linac operation. In this paper, we present the current linac performance and operational experience obtained so far after a brief review of the commissioning history. Remaining commissioning tasks and the future upgrade plan to increase the beam power are also discussed.

 

slides icon

Slides

 
MOP060 Quality Improvement of Laser-produced Protons by Phase Rotation and its Possible Extension to High Energies 214
 
  • A. Noda, Y. Iwashita, H. Souda, H. Tongu, A. Wakita
    Kyoto ICR, Uji, Kyoto
  • H. Daido, M. Ikegami, H. Kiriyama, M. Mori, M. Nishiuchi, K. Ogura, S. Orimo, A. Sagisaka, A. Yogo
    JAEA/Kansai, Kizu-machi Souraku-gun Kyoto-fu
  • A. Pirozhkov
    JAEA, Ibaraki-ken
  • T. Shirai
    NIRS, Chiba-shi
 
 

Funding: This work is supported by Advanced Compact Accelerator project by MEXT of Japanese Government and 21COE of Kyoto University, Center for Diversity and Universality in Physics.
By the phase rotation with the use of rf electric fields created by two gap resonator synchronous to a pulse laser, the energy spread of the laser-produced ions can be reduced*. In addition, owing to the curved structure of the electric field line in the gaps of the phase rotator, radial focusing effect is found also to exist. In order to extend the applicable energy of the phase rotation to the region where such laser produced protons can be directly applied for cancer therapy, multi-gap resonator with higher frequency has been proposed. By controlling the relative phases between the pulse laser and the electric fields in the gaps of phase rotator, we can create peaks in the energy spectrum simultaneously focusing in the radial direction.


* Japanese Journal of Applied Physics (Express Letter), 46 (2007) L717-L720

 
MOP078 Transverse Beam Matching and Orbit Corrections at J-PARC LINAC 260
 
  • H. Sako, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • H. Akikawa, M. Ikegami
    KEK, Ibaraki
  • T. Ohkawa
    JAEA, Ibaraki-ken
  • A. Ueno
    KEK/JAEA, Ibaraki-Ken
 
 

In the design of the very high intensity proton beam of the J-PARC LINAC, precise control of transverse beam dynamics is extremely important for suppression of beam loss. We present results of transverse beam matching and orbit corrections. The linac has 7 matching sections, each of which consists of 4 quadrupole magnets and 4 wire scanners. At 5 matching sections, beam widths at wire scanners are designed to agree with each other. This condition is used in the newly developed algorithm of quadrupole field correction based on a transport model, XAL. Excellent matching performance has been achieved with mismatch factor less than 5% at beam current of 5 to 30 mA. Control of beam parameters from linac into RCS is important for RCS paint injection. Beam studies and comparison to a model have been performed with linac wire scanners combined with multi-wire proportional monitors in the injection line. Orbit corrections with dipole steering magnets based on XAL model have been performed. Orbit deviations were suppressed within 1 mm in horizontal and vertical directions in the whole linac. For these measurements, detailed comparisons to a multi-particle simulation will be shown.

 

slides icon

Slides

 
THP056 Improvement in the ACS Cavity Design for the J-PARC Linac Energy Upgrade 915
 
  • H. Ao, K. Hasegawa, K. Hirano, T. Morishita, A. Ueno
    JAEA/LINAC, Ibaraki-ken
  • H. Asano
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • M. Ikegami, F. Naito
    KEK, Ibaraki
  • V.V. Paramonov
    RAS/INR, Moscow
  • Y. Yamazaki
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

The ACS (Annular-ring Coupled Structure) cavities were under development for the J-PARC Linac from 190 MeV to 400 MeV. We have fixed the cavity specification, taking into account the results of the high-power conditioning and the fabrication experience. The mass production of the ACS with a tight time schedule is now an issue, since the user community strongly requests the beam power upgrade as early as possible. Therefore, the design and the fabrication process of the ACS cavity have been reexamined on the basis of the experience, stored during the course of the fabrication and the tuning of the prototype ACS tanks. Here, we also discussed about the key issues on the mass production with a manufacturer. The cavity shape, that required complicated machining, was simplified to some extent, while the frequency tuning strategy was reconsidered to reduce the production period. The paper describes these recent activities on the ACS development.