A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Fong, K.

Paper Title Page
TUP002 ARIEL and the TRIUMF E-Linac Initiative, a 0.5 MW Electron Linac for Rare Isotope Beam Production 383
 
  • S.R. Koscielniak, F. Ames, R.A. Baartman, I.V. Bylinskii, R.J. Dawson, J.T. Drozdoff, K. Fong, A. Hurst, R. Keitel, R.E. Laxdal, F. Mammarella, M. Marchetto, L. Merminga, A.K. Mitra, K.W. Reiniger, T.C. Ries, R. Ruegg, I. Sekachev, G.M. Stinson, V.A. Verzilov
    TRIUMF, Vancouver
  • D. Karlen
    Victoria University, Victoria, B.C.
 
 

TRIUMF, in collaboration with university partners, proposes to construct a megawatt-class electron linear accelerator (e-linac) as a driver for U(γ,f) of actinide targets for nuclear astrophysics studies, and 9Be(γ,p)8Li for beta-NMR materials science. The e-linac is part of a broader proposal for an expansion of the TRIUMF rare isotope beams capability through a new facility to be named ARIEL. The e-linac design and prospects for funding are elaborated.

 
THP002 The 1.3 GHz Superconducting RF Program at TRIUMF 774
 
  • R.E. Laxdal, K. Fong, A. Grassellino, A.K. Mitra, I. Sekachev, V. Zvyagintsev
    TRIUMF, Vancouver
  • R.S. Orr, W. Trischuk
    University of Toronto, Toronto, Ontario
 
 

TRIUMF is proposing to build a 50 MeV electron linac as a driver to produce radioactive ion beams through photofission. The present design calls for the use of nine-cell 1.3 GHz Tesla type cavities. A 1.3 GHz Superconducting RF (SRF) program has been initiated with the goal to produce and test one nine cell cavity by the end of 2009. The program will utilize the existing clean room and SRF test facilities that support the ISAC-II heavy ion superconducting linac. A vertical cryostat has been modified with a new insert to allow single cell testing. Pumps for 2 K sub-atmospheric operation have been tested. A single cell fabrication program is being initiated with a local company. A RRR measurement program is on-going to test cavity welds. The goal of the 1.3 GHz upgrade is to not only produce cavities for the in house project but to broaden TRIUMF's technical base for future potential collaborations. The paper will report the progress and plans of the 1.3 GHz SRF program.

 

slides icon

Slides

 
THP003 Production and Testing of Two 141 MHz Prototype Quarter Wave Cavities for ISAC-II 777
 
  • R.E. Laxdal, R.J. Dawson, K. Fong, A. Grassellino, M. Marchetto, A.K. Mitra, T.C. Ries, V. Zvyagintsev
    TRIUMF, Vancouver
  • R. Edinger
    PAVAC, Richmond, B.C.
 
 

The medium beta section of the ISAC-II superconducting linac (β=5.7% and 7.1%) has been operational since April 2006 providing 20 MV of accelerating potential at 106 MHz. The ‘high beta' extension to the linac, in progress, will see the addition of twenty 141 MHz quarter wave cavities at β=11%. The design specification calls for cw operation at a voltage gain of at least 1.1 MV/cavity for no more than 7 W of power dissipated in the cavity. This operation point corresponds to challenging peak surface fields of 30 MV/m and 60 mT. The cavity design is similar in concept to the medium beta cavities except for the addition of a drift tube to render symmetric the accelerating fields. A prototyping and qualification program was initiated with PAVAC Industries Inc. of Richmond, B.C. Two full size models in copper and two in niobium have been completed. The niobium cavities have been warm and cold-tested and characterized for frequency, rf performance and mechanical stability. The cold performance of both cavities exceeds the specification and the final frequency is within tuning range. The design, fabrication details and test results will be presented.

 
THP004 Performance of the ISAC-II 141 MHz Solid State Amplifier 780
 
  • A.K. Mitra, I.V. Bylinskii, K. Fong, R.E. Laxdal, J. Lu, R.W. Shanks, V. Zvyagintsev
    TRIUMF, Vancouver
 
 

The ISAC-II linac extension requires an additional 20 rf amplifiers to power twenty 141 MHz quarter wave superconducting cavities. Solid state amplifiers will be used for this extension as compared to tube amplifiers which have been employed for the existing ISAC-II linac section, operational since 2006. The amplifiers are specified to run with an output power of 600 W. The first amplifier of the production series has been tested for gain and phase linearity. Phase noise of this amplifier has been measured on a 141 MHz superconducting cavity and compared with phase noise measured with a tube amplifier. The test results and general rf, interlock and interface requirements are verified against tendered specification before series production of the remaining amplifiers can proceed. Benchmarking tests of the prototype amplifier will be reported.

 
THP100 Self Tuning Regulator for ISAC 2 Superconducting RF Cavity Tuner Control 1024
 
  • K. Fong, M.P. Laverty, Q. Zheng
    TRIUMF, Vancouver
 
 

The ISAC 2 superconducting rf cavities use self-excited, phase-locked mode of operation. As such the microphonics are sensitive to the alignment of the phase control loop. Although initial alignments can minimize the effect of microphonics, long term drifts, particularly in the power amplifiers, can cause the control loop to misalign and an increase in sensitivity to microphonics. The ISAC 2 control system monitors several points in the control loop to determine the phase alignment of the power amplifiers as well as the rf resonant cavities. Online adaptive feedbacks using Self Tuning Regulators are employed to bring the different components back into alignment.

 
THP101 AM-PM Conversion Induced Instability in I/Q Feedback Control Loop 1027
 
  • K. Fong, M.P. Laverty, Q. Zheng
    TRIUMF, Vancouver
 
 

Most rf feedback control systems today uses the I/Q demodulation and modulation scheme because of its simplicity. Its performance, however, depends on the alignment of the feedback loops. If the loop contains elements that have a high AM-PM conversion such as a class C amplifier, then the misalignment is dynamic and power dependent. In the extreme case the I/Q loops can become unstable and the system settled into a limit-cycle oscillation.