Author: Yoshida, M.
Paper Title Page
MOPWA053 Emittance Preservation in SuperKEKB Injector 239
 
  • S. Kazama, Y. Ogawa, M. Satoh, H. Sugimoto, M. Yoshida
    KEK, Ibaraki, Japan
 
  Injector linac at KEK is now under the way to produce high current and low emittance beams for SuperKEKB. The target luminosity for SuperKEKB is 40 times higher than that of KEKB. Short-range transverse wakefield and dispersive effects at the linac cause an emittance growth, and longitudinal wakefield effect enlarges an energy spread of the beams. In this presentation, we will report simulation studies of the emittance preservation issues and how to suppress the increase of the energy spread of the beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYB1 Progress of SuperKEKB 1291
 
  • T. Miura, T. Abe, T. Adachi, K. Akai, M. Akemoto, A. Akiyama, D.A. Arakawa, Y. Arakida, Y. Arimoto, M. Arinaga, K. Ebihara, K. Egawa, A. Enomoto, J.W. Flanagan, S. Fukuda, H. Fukuma, Y. Funakoshi, K. Furukawa, T. Furuya, K. Hara, T. Higo, H. Hisamatsu, H. Honma, T. Honma, R. Ichimiya, N. Iida, H. Iinuma, H. Ikeda, M. Ikeda, T. Ishibashi, H. Ishii, M. Iwasaki, A. Kabe, T. Kageyama, H. Kaji, K. Kakihara, S. Kamada, T. Kamitani, S. Kanaeda, K. Kanazawa, H. Katagiri, S. Kato, S. Kazama, M. Kikuchi, T. Kobayashi, H. Koiso, Y. Kojima, M. Kurashina, K. Marutsuka, M. Masuzawa, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Mimashi, F. Miyahara, K. Mori, T. Mori, A. Morita, Y. Morita, H. Nakai, H. Nakajima, T.T. Nakamura, K. Nakanishi, K. Nakao, H. Nakayama, T. Natsui, M. Nishiwaki, J.-I. Odagiri, Y. Ogawa, K. Ohmi, Y. Ohnishi, S. Ohsawa, Y. Ohsawa, N. Ohuchi, K. Oide, T. Oki, M. Ono, H. Sakai, Y. Sakamoto, S. Sasaki, M. Sato, M. Satoh, K. Shibata, T. Shidara, M. Shirai, A. Shirakawa, M. Suetake, Y. Suetsugu, R. Sugahara, H. Sugimoto, T. Suwada, S. Takasaki, T. Takatomi, T. Takenaka, Y. Takeuchi, M. Tanaka, M. Tawada, S. Terui, M. Tobiyama, N. Tokuda, K. Tsuchiya, X. Wang, K. Watanabe, H. Yamaoka, Y. Yano, K. Yokoyama, Ma. Yoshida, M. Yoshida, S.I. Yoshimoto, K. Yoshino, R. Zhang, D. Zhou, X. Zhou, Z.G. Zong
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
 
  This presentation will cover the status of the installation and the injector commissioning status of SuperKEKB. The IR optics and design with very low β* of less than 1 mm will be discussed.  
slides icon Slides TUYB1 [6.588 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUYB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUBC1 Recent Progress and Operational Status of the Compact ERL at KEK 1359
 
  • S. Sakanaka, M. Adachi, S. Adachi, T. Akagi, M. Akemoto, D.A. Arakawa, S. Araki, S. Asaoka, M. Egi, K. Enami, K. Endo, S. Fukuda, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, K. Hozumi, A. Ishii, X.J. Jin, E. Kako, Y. Kamiya, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, Y. Kondou, A. Kosuge, T. Kume, T. Matsumoto, H. Matsumura, H. Matsushita, S. Michizono, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, N. Nakamura, K. Nakanishi, K. Nakao, K.N. Nigorikawa, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, T. Ozaki, F. Qiu, H. Sagehashi, H. Sakai, S. Sasaki, K. Satoh, T. Shidara, M. Shimada, K. Shinoe, T. Shioya, T. Shishido, M. Tadano, T. Tahara, T. Takahashi, R. Takai, H. Takaki, T. Takenaka, O. Tanaka, Y. Tanimoto, N. Terunuma, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, J. Urakawa, K. Watanabe, M. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
  • E. Cenni
    Sokendai, Ibaraki, Japan
  • R. Hajima, S. Matsuba, M. Mori, R. Nagai, N. Nishimori, M. Sawamura, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • J.G. Hwang
    KNU, Deagu, Republic of Korea
  • M. Kuriki
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
  • Y. Seimiya
    HU/AdSM, Higashi-Hiroshima, Japan
 
  Funding: Work supported by the Photon and Quantum Basic Research Coordinated Development Program from the MEXT, and by the MEXT grant for promoting technology for nuclear security.
The Compact Energy Recovery Linac (cERL) is a superconducting test accelerator aimed at establishing technologies for the ERL-based future light source. After its construction during 2009 to 2013, the first CW beams of 20 MeV were successfully transported through the recirculation loop in February 2014*. Then, initial tuning of beams and evaluations of beam properties were carried out. From September to December in 2014, we are constructing a Laser Compton Scattering (LCS) source** which aims at demonstrating technology for the future high-flux quasi-monochromatic gamma-ray source. In the next run of the cERL, which begins at the end of January 2015, we plan such works as an increase in the beam current (from 10 uA to 100 uA), commissioning of the LCS source, and sustained tuning of beams for lower emittance. We will report up-to-date results of these developments.
* N. Nakamura et al., IPAC2014, MOPRO110; S. Sakanaka et al., LINAC14, TUPOL01.
** R. Nagai et al., IPAC2014, WEPRO003.
 
slides icon Slides TUBC1 [2.679 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUBC1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA071 Improvements of the Laser System for RF-Gun at SuperKEKB Injector 1598
 
  • R. Zhang, T. Natsui, Y. Ogawa, M. Yoshida, X. Zhou
    KEK, Ibaraki, Japan
 
  For realizing higher charge and low emittance electron and positron beams in SuperKEKB, we have been making improvements in laser system for RF-gun. The difficulty in controlling thermomechanical distortions has been one of the most important factors for preserving high laser conversion efficiency of infrared-to-ultraviolet and operating at higher repetition rate. We demonstrated that efficient removal of waste heat can be realized by adopting Yb:YAG and copper bonding composite via Au-Sn solder. On the other hand, we proposed the novel design of the cascade laser configuration. Base on this, we can improve the quantum efficiency by utilizing other Yb ions doped crystals as active medium which are pumped by 1035 nm Yb:YAG laser. Excellent thermal management and high charge beams have been achieved by improvements of these two aspects. Additionally, in order to employ high duty ratio pump system and realize laser operation at high repetition rate, we investigated the laser operation in cryogenic environment. A perspective towards the next step experiment is also presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE001 Design of Wavelength Tunable Coherent X-Ray Source 1604
 
  • J. Hyun
    Sokendai, Ibaraki, Japan
  • K. Endo
    TOYAMA Co., Ltd., Zama-shi, Kanagawa, Japan
  • K. Hayakawa, Y. Hayakawa, T. Sakai, T. Tanaka
    LEBRA, Funabashi, Japan
  • I. Sato
    Nihon University, Advanced Research Institute for the Sciences and Humanities, Funabashi, Japan
  • M. Satoh, M. Yoshida
    KEK, Ibaraki, Japan
 
  KEK, Nihon University and TOYAMA CO., Ltd. have been developing the compact shieldless coherent X-ray source that can change the X-ray energy (3-25keV). This X-ray is the Parametric X-ray radiation (PXR) generated by relativistic charged particles passed through a single crystal. It has features that are monochromaticity, coherence and diffraction large angle for the incident beam. These indicate to the possibility for the application to the medical treatment and diagnosis. Furthermore, we try to reduce the radiation which is mainly generated when the high energy beam is damped. This system consists of an accelerating, a decelerating structure and four bending magnets (theta: 90 degree). These structures are operated under low temperature to get the high Q-value for long beam pulse. PXR is generated by colliding with a single crystal after electron beam is accelerated up to 75 MeV. The bunch passed through the crystal is transported into a decelerator structure and then is decelerated to 3 MeV there. Q-magnets are arranged that dispersion function is zero except arc sections. We calculated the beam transport, PXR intensity and emittance blow up. We'll report these details.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE003 Quasi-Traveling Wave RF Gun and Beam Commissioning for SuperKEKB 1610
 
  • T. Natsui
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • Y. Ogawa, M. Yoshida, X. Zhou
    KEK, Ibaraki, Japan
 
  We are developing a new RF gun for SuperKEKB. High charge low emittance electron and positron beams are required for SuperKEKB. We will generate 7.0 GeV electron beam at 5 nC 20 mm-mrad by J-linac. In this linac, a photo cathode S-band RF gun will be used as the electron beam source. For this reason, we are developing an advanced RF gun which has two side coupled standing wave field. We call it quasi-traveling wave side couple RF gun. This gun has a strong focusing field at the cathode and the acceleration field distribution also has a focusing effect. This RF gun has been installed in the KEK J-linac. Beam commissioning with the RF gun is in progress.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY008 Commissioning Status and Plan of SuperKEKB Injector Linac 2013
 
  • M. Satoh, M. Akemoto, D.A. Arakawa, Y. Arakida, A. Enomoto, Y. Enomoto, S. Fukuda, Y. Funakoshi, K. Furukawa, T. Higo, H. Honma, N. Iida, M. Ikeda, H. Iwase, H. Kaji, K. Kakihara, T. Kamitani, H. Katagiri, S. Kazama, M. Kikuchi, H. Koiso, M. Kurashina, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Mimashi, T. Miura, F. Miyahara, T. Mori, A. Morita, H. Nakajima, K. Nakao, T. Natsui, Y. Ogawa, Y. Ohnishi, S. Ohsawa, Y. Seimiya, T. Shidara, A. Shirakawa, M. Suetake, H. Sugimoto, T. Suwada, T. Takenaka, M. Tanaka, M. Tawada, Y. Yano, K. Yokoyama, M. Yoshida, R. Zhang, X. Zhou
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
 
  Toward SuperKEKB project, the injector linac upgrade is ongoing at KEK in order to deliver the low emittance electron/positron beams with the high intensity and small emittance. In the September of 2013, the injector linac commissioning has started. In this presentation, we will describe the commissioning status and plan of SuperKEKB injector linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA014 Low Temperature Properties of 20 K Cooled Test Cavity for C-band 2.6-cell Photocathode RF Gun 2519
 
  • T. Tanaka, M. Inagaki, K. Nakao, K. Nogami, T. Sakai
    LEBRA, Funabashi, Japan
  • M.K. Fukuda, T. Takatomi, J. Urakawa, M. Yoshida
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
  • T.S. Shintomi
    Nihon University, Tokyo, Japan
 
  Funding: Work supported by the Photon and Quantum Basic Research Coordinated Development Program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).
A cryogenic C-band 2.6-cell photocathode RF gun, which operates at 20 K, is under development at Nihon University for future possibility of use in a compact linac-driven X-ray source. The cavity material is 6N8 high purity copper, the RRR of which being expected to be higher than 3000. A 2.6-cell pi-mode test cavity was fabricated for investigation of the properties under low temperature of 20 K*. Ultraprecision machining and diffusion bonding of the cavity were carried out in KEK. The operating frequency of the RF gun cavity is 5712 MHz. The machining dimensions of the test cavity were determined by taking into account the contraction of copper from room temperature to 20 K by approximately 0.33 %. The resonant frequency observed at around 21 K was 5711.761 MHz, which is 185 kHz higher than the expected value that was deduced from the resonant frequency obtained at 23.5 degree C in vacuum and the linear expansion coefficient data for OFC copper by NIST**. The unloaded Q-value of 64500 obtained at 21 K is in agreement with the SUPERFISH calculation when the surface resistance of the RRR=3000 copper was specified with taking the anomalous skin effect into account.
* T. Tanaka et al., Proceedings of IPAC2014, 658-660, http://accelconf.web.cern.ch/AccelConf
/IPAC2014/papers/mopri030.pdf
** http://cryogenics.nist.gov/MPropsMAY/OFHC%20Copper/OFHCCopperrev.htm
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA015 RF Input Coupler for 20 K Cooled C-band 2.6-cell Photocathode RF Gun 2522
 
  • T. Tanaka, M. Inagaki, K. Nakao, K. Nogami, T. Sakai
    LEBRA, Funabashi, Japan
  • M.K. Fukuda, T. Takatomi, J. Urakawa, M. Yoshida
    KEK, Ibaraki, Japan
  • D. Satoh
    TIT, Tokyo, Japan
  • T.S. Shintomi
    Nihon University, Tokyo, Japan
 
  Funding: Work supported by the Photon and Quantum Basic Research Coordinated Development Program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).
For future use in a compact linac-driven X-ray source, a cryo-cooled C-band photocathode RF gun is under development. The RF experiment on the basic 2.6-cell test cavity has shown that the unloaded Q-value of the cavity at 20 K can be explained by the surface resistance based on the anomalous skin effect. Since the cavity was intended for preliminary experiments of the low temperature RF properties*, a new test cavity with an RF input coupler has been designed. The basic structure of the accelerating cells has not been changed from the previous cavity. Avoiding an element with a low cooling efficiency such as the inner electrode in a coaxial coupler, a simpler cylindrical input coupler has been designed. The coupler consists of a cylindrical TM01 mode waveguide and a mode converter from a rectangular TE10 mode, with both elements placed on the accelerating axis. The structure and the dimensions of the coupler have been determined using the 3-D simulation code CST Studio so that the resonant frequency of the whole system and the coupling coefficient of the coupler meet the specifications of the RF gun. The new test cavity will be completed early in 2015 at KEK.
* T. Tanaka et al., Proceedings of IPAC2014, 658-660, http://accelconf.web.cern.ch/AccelConf
/IPAC2014/papers/mopri030.pdf
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA018 Re-acceleration of Ultra Cold Muon in J-PARC MLF 2532
 
  • M. Yoshida, F. Naito
    KEK, Ibaraki, Japan
  • S. Artikova, Y. Kondo
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • N. Hayashizaki
    RLNR, Tokyo, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • K. Torikai
    Gunma University, Heavy-Ion Medical Research Center, Maebashi-Gunma, Japan
 
  Funding: MEXT KAKENHI Grant Number 6108718
The ultra cold muon beam by two-photon laser resonant ionization of muonium atoms is unique way to obtain very low emittance muon beam. Its muon source is a surface muon from the muon target in MLF where one percent proton beam from J-PARC RCS is reacted. In close collaboration with the Muon Science Es- tablishment (MUSE) at Material and Life science experi- mental Facility (MLF) of the Japan Proton Accelerator Re- search Complex (J-PARC), we are developing the reacceleration system of the ultra cold muon beam. Its optimum accelerating structure is similar to a proton accelerator in low beta part and an electron accelerator in high beta part. Further the muon bunch is only two bunch corresponding to the bunch structure of the J-PARC RCS. Thus we are testing the dielectric transmission line accelerator based on the photoconductive switch as the altenative acceleration method.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA023 Development of Muon LINAC for the Muon g-2/EDM Experiment at J-PARC 2541
 
  • M. Otani, Y. Fukao, T. Mibe, N. Saito, M. Yoshida
    KEK, Ibaraki, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • R. Kitamura
    University of Tokyo, Tokyo, Japan
  • Y. Kondo
    JAEA, Ibaraki-ken, Japan
 
  The muon anomalous magnetic moment (g-2) and electric dipole moment (EDM) are one of the effective paths to beyond Standard Model of elementary particle physics. The E34 experiment aims to measure g-2 with a precision of 0.1 ppm and search EDM with a sensitivity to 10-21 e*cm with high intensity proton driver at J-PARC and a newly developed novel technique of the ultra-cold muon beam. The ultra-cold muons, which are generated from surface muons by the thermal muonium production and laser ionization, are accelerated to 300 MeV/c by muon linear accelerator. The muon LINAC consists of RFQ and following three types of the RF cavities. The muon acceleration to this energy will be the first case in the world. This poster reports about status of the initial acceleration test with RFQ and the development of the RF cavities, especially for the middle beta section.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA044 25 Hz, Sub-mJ Ytterbium Laser Source of RF Gun for SuperKEKB Linac 2862
 
  • X. Zhou, T. Natsui, Y. Ogawa, M. Yoshida, R. Zhang
    KEK, Ibaraki, Japan
 
  For injector linac of SuperKEKB project, the 5 nC electron beams with double-bunch is expected to be generated in the photocathode RF gun. For the repetition rate of electrum beam, the optional of 2 Hz, 5 Hz, 25 Hz and 50 Hz are requested. Although, more than 5 nC electron with single-bunch has been generated in the 2 Hz and 5 Hz, when the repetition rate increases to 25 Hz, the condition of the laser amplifier system such as the thermal lens effect is changed seriously. To correspond to 25 Hz repetition rate, the ytterbium-doped laser system was reformed. An AuSu (80:20) heat-dissipating solder is employed to reduce the thermal lens effect. Because of the damage threshold limitation of the thin-disk crystal and optical mirrors, Some improvement were performed to increase the quality of the pulses rather than the amplify power, which cause the SHG conversion efficiency is up to 60% and 30% with 2ω and 4ω respectively. More than 3 nC electron beam is obtained with 25 Hz.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)