Author: Salom, A.
Paper Title Page
MOPTY042 ALBA LLRF Upgrades to Improve Beam Availability 1022
 
  • A. Salom, B. Bravo, J. Marcos, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  ALBA is a 3GeV synchrotron light source located in Barcelona and operating with users since May 2012. The RF system of the SR is composed of six cavities, each one powered by combining the power of two 80 kW IOTs through a Cavity Combiner (CaCo). At present, there are several RF interlocks per week. The redundancy given by the six cavities makes possible the survival of the beam after one of these trips. In these cases, the cavity has to be recovered with the circulating beam. An autorecovery process has been implemented in the digital LLRF system in order to recover the faulty RF plant after a trip. But these trips also create perturbations to the beam stability. In order to minimize the beam perturbations induced by these RF interlock, an additional feed-forward loop is being implemented. The functionally, main parameters and test results of these new algorithms will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMN049 Calibration of the Acceleration Voltage of Six Normal Conducting Cavities at ALBA 3036
 
  • B. Bravo, U. Iriso, J. Marcos, J.R. Ocampo, F. Pérez, A. Salom, P. Solans
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  ALBA is a 3Gev synchrotron light source located in Barcelona and operating with users since May 2012. The ALBA storage ring uses six room temperature cavities; each one fed by two 80kW IOTs amplifiers at 499.654 MHz. An accurate calibration of the RF voltage is required for the right adjustment of the beam synchronous phase. In addition, if the ring accommodates several RF cavities, these may not be optimally phased with respect to each other, complicating the calculation of the total RF voltage. In this paper, the steps to calibrate the accelerating voltage of the SR cavities will be presented and different methodologies to cross-check these calibrations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMN056 High Power Testing of the First Re-buncher Cavity for LIPAC 3051
 
  • F. Toral, D. Gavela, I. Podadera, D. Regidor, M. Weber, C. de la Morena
    CIEMAT, Madrid, Spain
  • B. Bravo, R. Fos, J.R. Ocampo, F. Pérez, A. Salom, P. Solans
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  Funding: This work is partially supported by the Spanish Ministry of Economy and Competitiveness under projects AIC-A-2011-0654 and the Agreement as published in BOE, 16/01/2013, page 1988
Two re-buncher cavities will be installed at the Medium Energy Beam Transport (MEBT) of the LIPAc accelerator, presently being built at Rokkasho (Japan). They are IH-type cavities with 5 gaps and will provide an effective voltage of 350 kV at 175 MHz for deuterons at 5 MeV. The first prototype has been designed at CIEMAT and built by the Spanish industry. The high power tests and RF conditioning have been successfully performed at the ALBA/CELLS RF laboratory. A solid state power amplifier, which has been developed by CIEMAT and its partner companies at Spain for the LIPAc RF System, has been used for the tests. The cavity has shown a performance according to calculations, regarding the dissipated power, peak temperatures and coupling factor. RF conditioning was started with a duty cycle of 3%, which was increased gradually till continuous wave (CW), which is the nominal working mode in LIPAc.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)