Paper | Title | Page |
---|---|---|
WEAD2 | Experimental Results of Carbon NanoTube Cathodes inside RF Environment | 2475 |
|
||
Funding: Work supported by US DOE SBIR grant # DE-SC0004459 Carbon Nano Tubes (CNT’s) as field-emitters have been investigated for more than two decades and can produce relatively low emittance electron beams for a given cathode size. Unlike thermionic cathodes, CNT cathodes are able to produce electrons at room temperature and relatively low electric field (a few MV/m). In collaboration with FermiLab, we have recently tested CNT cathodes both with DC and RF fields. We observed a beam current close to 1A with a ~1cm2 CNT cathode inside an L-band RF gun. Steady operation was obtained up to 650 mA and the measured current vs. surface field plot showed perfect agreement with the Fowler-Nordheim distribution. |
||
![]() |
Slides WEAD2 [10.445 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEAD2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPWA009 | Channeling Radiation Experiment at Fermilab ASTA | 95 |
|
||
Electron beams with moderate energy ranging from 4 to 50 MeV can be used to produce x-rays through the Channeling Radiation (CR) mechanism. Typically, the x-ray spectrum from these sources extends up to 140 keV and this range covers the demand for most practical applications. The parameters of the electron beam determine the spectral brilliance of the x-ray source. The electron beam produced at the Fermilab new facility Advanced Superconducting Test Accelerator (ASTA) meets the requirements to assemble an experimental high brilliance CR x-ray source. In the first stage of the experiment the energy of the beam is 20 MeV and due to the very low emittance (100 nm) at low bunch charge (20 pC) the expected average brilliance of the x-ray source is 0.8x107 photons/[s-(mm-mrad)2-0.1%BW]. In the second stage of the experiment the beam energy will be increased to 50 MeV and consequently the average brilliance will be 4.8x108 photons/[s-(mm-mrad)2-0.1%BW]. Also, the x-ray spectrum will be extended from about 30 keV to 140 keV. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA009 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWA071 | A Compact X-Ray Source Based on a Low-Energy Beam-Driven Wakefield Accelerator | 2667 |
|
||
Accelerator-based X-ray sources have led to many scientific breakthroughs. Yet, their limited availability in large national laboratory settings due to the required infrastructure is a major limitation to their disseminations to a larger user community. In this contribution we explore the use of a low-energy electron beam produced out of a photoinjector coupled to a dielectric structure to produce a higher energy (~10-20 MeV) beam via a beam-driven acceleration scheme. The accelerated beam can then be used to produce X-ray via inverse Compton scattering. This paper discusses the concept and presents start-to-end simulations of the proposed setup. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA071 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPJE019 | Simulations of Field-Emission Electron Beams from CNT Cathodes in RF Photoinjectors | 2711 |
|
||
Average field emission currents of up to 700 mA were produced by Carbon Nano Tube (CNT) cathodes in a 1.3 GHz RF gun at Fermilab High Brightness Electron Source Lab. (HBESL). The CNT cathodes were manufactured at Xintek and tested under DC conditions at RadiaBeam. The electron beam intensity as well as the other beam properties are directly related to the time-dependent electric field at the cathode and the geometry of the RF gun. This report focuses on simulations of the electron beam generated through field-emission and the results are compared with experimental measurements. These simulations were performed with the time-dependent Particle In Cell (PIC) code WARP. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPJE019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |