Author: Chun, M.-H.
Paper Title Page
WEPMN036 Design Study on a High Power RF Amplifier for the RFQ* 3009
 
  • M.-H. Chun, K.-H. Park, I.H. Yu
    PAL, Pohang, Kyungbuk, Republic of Korea
  • J. Bahng
    Kyungpook National University, Daegu, Republic of Korea
  • J.G. Hong, B.S. Lee, J.W. Ok, M. Won
    Korea Basic Science Institute, Busan, Republic of Korea
  • D.S. Kim, Y. Moon, M. Seo
    Dawonsys, Siheung-City, Republic of Korea
  • Y.S. Lee
    SKKU, Suwon, Republic of Korea
 
  Funding: Korea Basic Science Institute in Korea
The design of RF amplifier of 100 kW (CW) at 165MHz is studied for a Radio Frequency Quadruple (RFQ). The RFQ as a linear accelerator is used for acceleration of low energy beam to 500 keV/u at KBSI [1]. An RF amplifier is composed of a drive, an intermediate, and a final amplifier stage with power supplies. The intermediate amplifier (IPA) of 5 kW is designed with solid state amplifier modules, and the final amplifier is designed with a tetrode tube. The high voltage power supply for the tetrode provides the fine regulation of 15 kV at 10 A. The RF amplifier is operated by program logic controller (PLC) with interlocks, and a low level RF control for RFQ accelerator. This paper describes the present design study on the 100 kW RF amplifier.
"*" Supported by Korea Basic Science Institute in Korea
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMN037 High Power Klystron Amplifiers for the PLS & PLS-II Storage Ring 3012
 
  • M.-H. Chun, Y.D. Joo, H.J. Park, I.S. Park, Y.U. Sohn, I.H. Yu
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: Ministry of Science, ICT and Future Planning in Korea
The RF system of the Pohang Light Source-II (PLS-II) storage ring is operating at the 3.0 GeV/340 mA with three superconducting RF cavities. PLS-II RF system was upgraded to 3.0 GeV/400 mA (max.) beam storage from 2.5 GeV/ 200 mA of PLS. Each high power RF (HPRF) station is composed of a 300 kW klystron with power supplies, transmission components including a 350 kW circulator and load, and water cooling system. The klystrons are generally operated as a RF power source with high gain amplification for RF system of light sources. This paper describes the present operation status of 300 kW klystron amplifier and experiences of the former PLS 75 kW klystron amplifiers as well as RF system.
*Supported by the Ministry of Science, ICT and Future Planning in Korea
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMN039 RF Accelerating Voltage of PLS-II Superconducting RF System for Stable Top-up Operation with Beam Current of 400 mA 3015
 
  • Y.D. Joo, M.-H. Chun, T. Ha, I. Hwang, B.-J. Lee, I.S. Park, S. Shin, Y.U. Sohn, I.H. Yu
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  During the beam store test up to 400 mA in the storage ring, it was observed that the vacuum pressure around the RF window of the superconducting cavity rapidly increases over the interlock level limiting the availability of the maximum beam current storing. We investigated the cause of the window vacuum pressure increment by studying the changes in the electric field distribution at the superconducting cavity and waveguide according to the beam current. An equivalent physical modeling was developed using a finite-difference time-domain (FDTD) simulation and it revealed that the electric field amplitude at the RF window is exponentially increased as the beam current increases, thus this high electric field amplitude causes a RF breakdown at the RF window.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMN042 400 mA Beam Store with Superconducting RF Cavities at PLS-II 3021
 
  • Y.U. Sohn, M.-H. Chun, T. Ha, M.S. Hong, Y.D. Joo, H.-S. Kang, H.-G. Kim, K.R. Kim, T.-Y. Lee, C.D. Park, H.J. Park, I.S. Park, S. Shin, I.H. Yu, J.C. Yun
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: Minister of Science, ICT and Future Planning
Three superconducting RF cavities were commissioned with electron beam in way of one by one during the last 3 years, and now PLS-II is in user service on the way of beam current to 400mA, the target of PLS-II. The cavities and cryomodules were prepared with SRF standard technology and procedures, then vertical test, windows conditioning, cryogenic test in each cryomodule, horizontal power test, conditioning, and commissioning without and with beam at PLS-II tunnel by collaboration with industries. All the cavities showed stable performances as good as not-observing any RF instability from cavities, couplers and windows up to 400 mA beam store, but observing several cavity quenches and minor vacuum bursts by abrupt power with control and human errors. The initial beam current for user run were recorded as 150 mA with one cavity, 280 mA with two cavities and 320 mA with three cavities. The 400 mA beam was also achieved with two cavities by decay mode and also with three cavities by top-up mode. The stabilities of RF amplitude and phase are good enough not to induce beam instabilities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMN043 The RF Stability of PLS-II Storage Ring RF System 3024
 
  • I.H. Yu, M.-H. Chun, M.H. Jeong, Y.D. Joo, H.-S. Kang, H.-G. Kim, H.J. Park, I.S. Park, Y.U. Sohn
    PAL, Pohang, Kyungbuk, Republic of Korea
  • Y.S. Lee
    SKKU, Suwon, Republic of Korea
 
  Funding: Minister of Science, ICT and Future Planing
The RF system for the Pohang Light Source (PLS) storage ring was greatly upgraded for PLS-II project of 400mA, 3.0GeV from 200mA, 2.5GeV. Three superconducting RF cavities with each 300kW maximum klystron amplifier were commissioned with electron beam in way of one by one during the last 3 years for beam current of 400mA to until March 2014. The RF system is designed to provide stable beam through precise RF phase and amplitude requirements to be less than 0.3% in amplitude and 0.3° in phase deviations. This paper describes the RF system configuration, design details and test results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)