Author: Sauerland, D.
Paper Title Page
TUPRI016 First Studies on Ion Effects in the Accelerator ELSA 1585
 
  • D. Sauerland, W. Hillert, M.T. Switka
    ELSA, Bonn, Germany
  • A. Markoviḱ, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • A. Meseck
    HZB, Berlin, Germany
 
  Funding: BMBF (Federal Ministry of Education and Research)
In the ELSA stretcher ring electrons are accelerated by a fast energy ramp of 6 GeV/s to a beam energy of 3.2 GeV. The high energetic electrons ionize the residual gas molecules in the beam pipe by collisions or synchrotron radiation. The generated ions in turn accumulate inside the beam potential, causing several undesired effects such as tune shifts and beam instabilities. These effects are studied experimentally at ELSA using its full diagnostic capabilities. Both tune shifts due to beam neutralization and transversal beam-ion instabilities can be determined from the beam spectrum. Additionally the beam's transfer function can be measured using a broadband transversal kicker. In the stretcher ring at a beam energy of 1.2 GeV, a periodic beam blow-up was detected in the horizontal plane. Additional measurements of the transversal beam spectrum and ns-time resolution observations with a streak camera identified this blow-up as a coherent dipole oscillation of the beam. This horizontal instability is presumably caused by trapped ions, as there is a strong correlation with the high voltage-bias of the clearing electrodes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI046 Dynamics of Ion Distributions in Beam Guiding Magnets 1668
 
  • A. Markoviḱ, G. Pöplau, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • W. Hillert, D. Sauerland
    ELSA, Bonn, Germany
  • A. Meseck
    HZB, Berlin, Germany
 
  Funding: Supported by the German Federal Ministry of Education and Research (BMBF) under contract number 05K13HRC.
Ions generated by synchrotron radiation and collisions of the beam with the rest gas in the vacuum chamber could be a limiting factor for the operation of electron storage rings and Energy Recovery Linacs (ERL). In order to develop beam instability mitigation strategies, a deeper understanding of the ion-cloud behaviour is needed. Numerical simulations of the interaction between electron beams and parasitic ions verified with dedicated measurements can help to acquire that knowledge. This paper presents results of detailed simulations of the interaction in quadrupole magnets and drift sections of the Electron Stretcher Accelerator ELSA in Bonn. The focus is on the evaluation of the dynamics of different ion species and their characteristic distribution in quadrupole magnets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME062 A New Digital LLRF System for a Fast Ramping Storage Ring 2418
 
  • M. Schedler, F. Frommberger, W. Hillert, D. Proft, D. Sauerland
    ELSA, Bonn, Germany
  • D. Teytelman
    Dimtel, San Jose, USA
 
  At the Electron Stretcher Facility ELSA of Bonn University, an upgrade of the maximum stored beam current from 20 mA to 200 mA is planned. The storage ring operates applying a fast energy ramp of 6 GeV/s from 1.2 GeV to 3.5 GeV and a slow extraction afterwards over a few seconds to the hadron physics experiments. The intended upgrade is mainly limited by the coupled-bunch instabilities and the ability of bunch-by-bunch feedback systems to suppress such instabilities. In order to achieve optimum bunch-by-bunch feedback performance, the beam phase with respect to the master oscillator and the synchrotron frequency have to stay constant. This paper reports on a new high performance low level RF (LLRF) system. The system stabilizes the cavity field and is capable of executing fast voltage and phase ramps. The LLRF uses FPGA-based digital signal processing and includes cavity tuner control as well as fast interlocks and extensive diagnostics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)