Author: Webb, S.D.
Paper Title Page
MOPWO070 Higher Order Symplectic Integration of Collective Effects 1046
 
  • S.D. Webb, D.T. Abell
    Tech-X, Boulder, Colorado, USA
 
  Long time tracking simulations of intense beams requires a proper account for the collective effects. Many tracking codes allow the number of space charge kicks, for example, to be determined by the end user. This makes no guarantee that the integration is second order accurate in the step size. In this proceeding, we present results on the proper second- and fourth-order symplectic integration of the Hamiltonian dynamics of particles under collective interactions using a model Hamiltonian with collective space charge forces to illustrate the underlying principles.  
 
MOPWO071 Coherent Electron Cooling: Status of Single-Pass Simulations 1049
 
  • B.T. Schwartz, G.I. Bell, I.V. Pogorelov, S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • D.L. Bruhwiler
    CIPS, Boulder, Colorado, USA
  • Y. Hao, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
  • S. Reiche
    PSI, Villigen PSI, Switzerland
 
  Funding: US DOE Office of Science. Contracts DE-FC02-07ER41499, DE-FG02-08ER85182, DE-AC02-05CH11231.
Advances in nuclear physics depend on experiments that employ relativistic hadron accelerators with dramatically increased luminosity. Current methods of increasing hadron beam luminosity include stochastic cooling and electron cooling; however, these approaches face serious difficulties at the high intensities and high energies proposed for eRHIC *. Coherent electron cooling promises to cool hadron beams at a much faster rate**. A single pass of an ion through a coherent electron cooler involves the ion's modulating the charge density of a copropagating electron beam, amplification of the modulated electron beam in a free-electron laser, and energy correction of the ion in the kicker section. Numerical simulations of these three components are underway, using the parallel Vorpal framework and Genesis 1.3, with careful coupling between the two codes. Here we present validations of two components of the simulations: Adding bunching to an electron beam at the start of an FEL, and the time-dependent charge density modulation in the kicker.
* http://www.bnl.gov/cad/eRHIC/
** V.N. Litvinenko and Y.S. Derbenev, Phys. Rev. Lett. 102, 114801 (2009).
 
 
TUPFI081 Progress with Coherent Electron Cooling Proof-Of-Principle Experiment 1535
 
  • I. Pinayev, S.A. Belomestnykh, I. Ben-Zvi, K.A. Brown, J.C. Brutus, L. DeSanto, A. Elizarov, C. Folz, D.M. Gassner, Y. Hao, R.L. Hulsart, Y.C. Jing, D. Kayran, R.F. Lambiase, V. Litvinenko, G.J. Mahler, M. Mapes, W. Meng, R.J. Michnoff, T.A. Miller, M.G. Minty, P. Orfin, A. Pendzick, F. Randazzo, T. Rao, T. Roser, J. Sandberg, B. Sheehy, J. Skaritka, K.S. Smith, L. Snydstrup, R. Than, R.J. Todd, J.E. Tuozzolo, G. Wang, D. Weiss, M. Wilinski, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, J.R. Cary, K. Paul, B.T. Schwartz, S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • C.H. Boulware, T.L. Grimm, R. Jecks, N. Miller
    Niowave, Inc., Lansing, Michigan, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • M. Poelker
    JLAB, Newport News, Virginia, USA
 
  We conduct proof-of-the-principle experiment of coherent electron cooling (CEC), which has a potential to significantly boost luminosity of high-energy, high-intensity hadron colliders. In this paper, we present the progress with experimental equipment including the first tests of the electron gun and the magnetic measurements of the wiggler prototype. We describe current design status as well as near future plans.  
 
THYB101 Suppressing Transverse Beam Halo with Nonlinear Magnetic Fields 3099
 
  • S.D. Webb, D.T. Abell, D.L. Bruhwiler, J.R. Cary
    Tech-X, Boulder, Colorado, USA
  • V.V. Danilov
    ORNL, Oak Ridge, Tennessee, USA
  • S. Nagaitsev, A. Valishev
    Fermilab, Batavia, USA
 
  Funding: This work was supported in part by the US Department of Energy's Office of Science, Office of High Energy Physics, under grant No. DE-SC0006247.
Traditional space charge driven resonances, such as beam halo, arise due to the underlying linear nature of accelerator lattices. In this talk, we present initial results on a new class of intrinsically nonlinear lattices, which introduce a large tune spread naturally. The resulting nonlinear decoherence suppresses the onset of beam halo.
 
slides icon Slides THYB101 [63.510 MB]