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Abstract

Long time tracking simulations of intense beams re-

quires a proper account for the collective effects. Many

tracking codes allow the number of space charge kicks, for

example, to be determined by the end user. This makes no

guarantee that the integration is second order accurate in

the step size. In this proceeding, we present results on the

proper second- and fourth-order symplectic integration of

the Hamiltonian dynamics of particles under collective in-

teractions using a model Hamiltonian with collective space

charge forces to illustrate the underlying principles.

* * *

Symplectic integration [1, 2] places a strong constraint

on any numerical scheme by assuring that the numerical re-

sults satisfy the symplectic condition to machine precision.

This constraint guarantees that the phase space volume oc-

cupied by the numerical trajectories is constant, which pre-

vents spurious “heating” of the particles. Single particle

second-order symplectic integration has been a mainstay of

tracking codes since before the TEAPOT library [3] imple-

mented the symmetric drift-kick paradigm for high energy

tracking, which assures second order accuracy.

As was shown by Forest and Ruth [4], symplectic in-

tegrators may be constructed using Lie algebraic splitting

as an application of Dragt-Finn factorization [5, 6, 7]. In

summary, the dynamics of a phase space variable z may be

written in terms of Poisson brackets as

ż = −{H, z} ≡ − :H : z (1)

where the Hamiltonian H has been promoted to the status

of a Lie operator. For a time-independent Hamiltonian, the

solution to the above operator differential equation is

z(t) = exp (− :H : t) z(0) (2)

For a Hamiltonian of the formH = p2

/2+V (q), the second

order Ruth integrator would be written as a split operator of

the form

M∆t = exp
(
− :p

2

/2: ∆t/2
)

exp (− :V (q):∆t) exp
(
− :p

2

/2: ∆t/2
) (3)

where M is the transfer map forward in time by ∆t.
The Baker-Campbell-Hausdorff series from combining this

symmetric splitting of the Hamiltonian yields the correct
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Hamiltonian up to second order in ∆t. In the language of

Talman’s “exact solution of an approximate machine”, this

yields the correct machine up to second order in the step

size.

Phrased another way, the solutions derived from a sym-

plectic splitting are an exact solution to the Hamiltonian

formed when the splitting is concatenated exactly to all or-

ders in the time step. Thus, a second order symplectic in-

tegration scheme exactly solves a Hamiltonian which ap-

proximates the exact Hamiltonian at second order accuracy

in the time step. This is a crucial property of symplectic

integrators, and we will explore this in the context of grid

spacing and approximate field solves later.

First order integrators are undesirable because there is

no formal way to reduce the numerical error introduced by

the splitting. To see this, consider a first order splitting on

a time-indendent Hamiltonian H which yields the map

M∆t = exp
(

− :H :∆t+ :H̃(1) :∆t2 + . . .
)

(4)

To integrate to time N∆t = T requires N applications of

the above operator, which yields the net transfer map

MT = exp
(

− :H : T + :H̃(1) :N∆t2 + . . .
)

(5)

where we have neglected higher order terms. The difficulty

here is in reducing the error term. Since N∆t must be

fixed at T , the error term can only be reduced linearly by

reducing the time step – doubling accuracy requires dou-

ble the computing time. A higher order algorithm, one

for which the error term is of the form :H :(3) N∆t3 can

achieve much more rapid convergence. This is the point of

second- and higher-order symplectic integrators.

The symmetric splitting in the drift-kick or other

schemes used in single particle tracking achieves this

second-order accuracy, but the implementation of collec-

tive effects such as space charge or wake fields frequently

violates this. A common example is a user-defined number

of space charge kicks, which will frequently violate the sec-

ond order requirements unless the user is particularly care-

ful. The frequent net result is a first-order splitting of the

collective component of the Hamiltonian V with second-

order accuracy on the remaining components H0 + H1,

where we have assumed the total Hamiltonian

H = H0 +H1 + V (6)

As an example problem for the proper higher-order inte-

gration, consider the one-dimensional harmonic oscillator
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Hamiltonian with 1D Coulomb interaction

H =
∑

j

1

2

(
p2j + ω2q2j

)
+

q2

2

∑

i6=j

|qi − qj | (7)

where q is the particle charge. Because this Hamiltonian

is autonomous, the total energy is time-independent and

makes an excellent metric for the order of accuracy in the

numerical schemes presented.

To properly bookkeep when to compute the force, we

introduce the extended phase space formalism described in

[8] for example. In this, we introduce a new Hamiltonian

K which depends upon an independent variable σ and is

given by

K(p, q, pt, t;σ) = H(p, q, t) + pt (8)

where pt is the canonically conjugate momentum to the t
dependent variable, and gives t′ = 1 with σ as the indepen-

dent variable.

A pure first order integration scheme would take the

splitting

M
(1)
∆t = exp (− :H0 :∆t) exp (− :H1 :∆t) exp (− :V :∆t)

(9)

while a hybrid 3/2 integration scheme would be split as

M
(3/2)
∆t = exp (− :H0 :∆t/2)

exp (− :H1 :∆t) exp (− :H0 :∆t/2) exp (− :V :∆t)

(10)

The hybrid 3/2 scheme will be second-order accurate in

H0 + H1, but only first-order accurate in V . This scheme

seems to typify most accelerator tracking codes. A fully

second-order scheme would take the form

M
(2)
∆t = exp (− :H0 :∆t/2) exp (− :H1 :∆t)

exp (− :V :∆t) exp (− :H1 :∆t/2) exp (− :H0 :∆t)

(11)

Here the selection to place theV map in the symmetric mid-

dle is based on the idea that the calculation of the collective

forces is much slower than the single-particle components,

and thus reducing the number of collective force calcula-

tions leads to much faster simulations compared to other

splitting schemes. As was shown by Yoshida [2], a fourth-

order integrator may be obtained by three second-order in-

tegrators as

M
(4)
∆t = M

(2)

∆t/(2−21/3)
M

(2)

−21/3∆t/(2−21/3)
M

(2)

∆t/(2−21/3)

(12)

What this negative time-stepping means is made clear by

the extended phase space formalism discussed above: it is

obtained by moving σ back in time, but because all the

associated particle σ also move back in time, it is simply

taken by performing all maps to the right of the V mapping,

computing V with these intermediate coordinates, and then

applying the appropriate map.
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Figure 1: Polynomial convergence for 1st, 3/2th, 2nd, and

4th order integration schemes.

Explicitly, if we start with z(t), the fourth order update

will follow the sequence:

z(t) 7→ M
(2)

∆t/(2−21/3)
z(t) 7→

M
(2)

−21/3∆t/(2−21/3)
z(t+∆t/(2− 21/3)) 7→

M
(2)

∆t/(2−21/3)
z(t+∆t(1−21/3/2−21/3)) 7→

z(t+∆t)

(13)

While t′ < t in the middle of the time step, this is merely

formalism. There is no physical meaning to any of the val-

ues of z between z(t) and z(t + ∆t) during the time step

– one cannot simply stop the time step half way and ask

questions expecting sensible answers; the integrator does

not resolve any smaller than ∆t.

The resulting convergence of |(E−E0)/E0| for the four

schemes is shown in figure (1). In this integration, we

have considered a direct N2 computation of the collective

forces of N harmonically confined particles in one dimen-

sion, which removes the effects of grid size. However, the

integer-order splittings show a clear improvement with step

size.

The N2 computation is intractable for any realistic beam

simulations. The role of grid spacing, however, does make

an appearance for the approximate potential being com-

puted. The grid spacing will give an exact Hamiltonian

H̃ = H0(p, q) + V(q,∆x) (14)

where ∆x represents the grid spacing. This Hamiltonian

is approximately solved for through the splitting methods

described above. For a second order accurate calculation
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of the potential, this yields a result of the form

H̃ ≈ H0(p, q) + V(q,∆x = 0)
︸ ︷︷ ︸

Hexact(p,q)

+ . . .

. . .
1

2

∂2V

∂∆xi∂∆xj
∆xi∆xj +O(∆x3)

(15)

and thus the exact solution may be arrived upon at arbitrary

accuracy by reducing the grid spacing. The goal is to ex-

actly solve the dynamics of Hexact. There is an interplay

between the convergence of H̃ to H , the exact Hamilto-

nian solved by the splitting, and the convergence of H to

Hexact. Thus, the grid spacing affects our understanding

of the exact solution for the approximate machine, and the

time stepping affects how closely our approximate machine

resembles the exact machine.

One requirement, a known issue within tracking codes,

is the simultaneity of the independent variable in the field

solves. We skirt this issue in these examples by using a

constant focusing force, which does not apply to real accel-

erator systems. The issue of simultaneous in t for the Pois-

son equation and the use of s based tracking codes we pro-

pose to resolve elsewhere in these proceedings [9], which,

in light of these results, may help guide future development

in tracking codes for intense beam transport.

As beam intensity increases, it is important to obtain

quantitative, and not merely qualitative, accuracy in nu-

merical simulations of these future machines. Higher or-

der accuracy is the most straightforward method of ob-

taining this convergence. We have thus presented a first-,

second-, and fourth-order accurate symplectic integration

scheme for systems with collective effects, which assures

both rapid numerical convergence and preservation of the

symplectic condition. We have furthermore illustrated, us-

ing the 3/2-order scheme, that the convergence of a tracking

code is only first order if the collective effects are not han-

dled with care.
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