Author: Uythoven, J.A.
Paper Title Page
MOODB201 Proton-nucleus Collisions in the LHC 49
 
  • J.M. Jowett, R. Alemany-Fernandez, P. Baudrenghien, D. Jacquet, M. Lamont, D. Manglunki, S. Redaelli, M. Sapinski, M. Schaumann, M. Solfaroli Camillocci, R. Tomás, J.A. Uythoven, D. Valuch, R. Versteegen, J. Wenninger
    CERN, Geneva, Switzerland
 
  Following the high integrated luminosity accumulated in the first two Pb-Pb collision runs in 2010 and 2011, the LHC heavy-ion physics community requested a first run with p-Pb collisions. This almost unprecedented mode of collider operation was not foreseen in the baseline design of the LHC whose two-in-one magnet design imposed equal rigidity and, hence, unequal revolution frequencies, during injection and ramp. Nevertheless, after a successful pilot physics fill in 2012, the LHC provided 31 nb-1 of p-Pb luminosity per experiment, at an energy of 5.02 TeV per colliding nucleon pair, with several variations of the operating conditions, in early 2013. Together with a companion p-p run at 2.76 TeV, this was the last physics before the present long shutdown. We summarise the beam physics, operational adaptations and strategy that resulted in extremely rapid commissioning. Finally, we give an account of the progress of the run and provide an analysis of the performance.  
slides icon Slides MOODB201 [6.547 MB]  
 
MOPFI053 Upgrades of the SPS, Transfer Line and LHC Injection Protection Devices for the HL-LHC Era 401
 
  • Ö. Mete, O. Aberle, F. Cerutti, K. Cornelis, B. Goddard, V. Kain, R. Losito, F.L. Maciariello, M. Meddahi, A. Mereghetti, J.A. Uythoven, F.M. Velotti
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, USA
 
  The challenging High Luminosity LHC (HL-LHC) beam requirements will lead in the future to unprecedented beam parameters along the LHC injector chain. In the SPS accelerator these requests translate into about a factor two higher intensity and brightness than the present design performance. In addition to the challenge of producing and accelerating such beams, these parameters affect the resistance of the existing equipment against beam impact. Most of the protection devices in the SPS ring, its transfer lines and the LHC injection areas will be put under operational constraints which are beyond their design specification. The equipment concerned has been reviewed and their resistance to the HL-LHC beams checked. Theoretical and simulation studies have been performed for the SPS beam scraping system, the protection devices and the dump absorbers of the SPS-to-LHC transfer lines, as well as for the LHC injection protection devices. The first results of these studies are reported, together with the future prospects.  
 
MOPFI060 Beam Transfer to LHC with the Low Gamma-transition SPS Optics 419
 
  • G. Vanbavinckhove, W. Bartmann, H. Bartosik, C. Bracco, L.N. Drøsdal, B. Goddard, V. Kain, M. Meddahi, V. Mertens, Y. Papaphilippou, J.A. Uythoven, J. Wenninger
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, USA
 
  A new low gamma-transition optics with a lower integer tune, was introduced in the SPS to improve beam stability at high intensity. For transferring the beam to the LHC, the extraction bumps, extraction kickers and transfer lines needed to be adapted to the new optics. In particular, the transfer lines were re-matched and re-commissioned with the new optics. The first operational results are discussed for the SPS extraction, the transfer lines and the LHC injection. A detailed comparison is presented between the old and the new optics of the trajectories, dispersion, losses and other performance aspects.  
 
MOPWA030 Upgrade of the LHC Injection Kicker Magnets 729
 
  • M.J. Barnes, P. Adraktas, V. Baglin, G. Bregliozzi, S. Calatroni, F. Caspers, H.A. Day, L. Ducimetière, M. Garlaschè, V. Gomes Namora, J.M. Jimenez, N. Magnin, V. Mertens, E. Métral, B. Salvant, M. Taborelli, J.A. Uythoven, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  The two LHC injection kicker systems, comprising 4 magnets per ring, produce a kick of 1.3 T.m with a rise-time of less than 900 ns and a flattop ripple of less than ±0.5%. A beam screen is placed in the aperture of each magnet, to provide a path for the image current of the high intensity LHC beam and screen the ferrite yoke against wake fields. The screen consists of a ceramic tube with conductors in the inner wall. The initially implemented beam screen ensured a low rate of electrical breakdowns while providing an adequate beam coupling impedance. Operation with increasingly higher intensity beams, stable for many hours at a time, now results in substantial heating of the ferrite yoke, sometimes requiring cool down over several hours before the LHC can be refilled. During the long shutdown in 2013/2014 all 8 kicker magnets will be upgraded with an improved beam screen and an increased emissivity of the vacuum tank. In addition equipment adjacent to the injection kickers and various vacuum components will also be modified to help reduce the vacuum pressure in the kickers during high-intensity operation. This paper discusses the upgrades as well as their preparation and planning.  
 
MOPWA031 Beam Induced Ferrite Heating of the LHC Injection Kickers and Proposals for Improved Cooling 732
 
  • M.J. Barnes, S. Calatroni, F. Caspers, L. Ducimetière, M. Garlaschè, V. Gomes Namora, V. Mertens, Z.K. Sobiech, M. Taborelli, J.A. Uythoven, W.J.M. Weterings
    CERN, Geneva, Switzerland
  • H.A. Day
    UMAN, Manchester, United Kingdom
 
  The two LHC injection kicker systems produce a kick of 1.3 T.m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of each magnet, which consists of a ceramic tube with conductors in the inner wall. The conductors provide a path for the beam image current and screen the ferrite yoke against wake fields. Recent LHC operation, with high intensity beam stable for many hours, resulted in significant heating of both the ferrite yoke and beam impedance reduction ferrites. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the ferrites can require several hours to cool enough to re-inject beam, thus limiting the availability of the LHC. Thermal measurement data has been analysed, a thermal model developed and emissivity measurements carried out. The effects of various measures to improve the ferrite cooling have been simulated, including an improved emissivity of the vacuum tank and active cooling on the outside of the tank.  
 
MOPWA032 Reduction of Surface Flashover of the Beam Screen of the LHC Injection Kickers 735
 
  • M.J. Barnes, P. Adraktas, S. Calatroni, F. Caspers, L. Ducimetière, V. Gomes Namora, V. Mertens, R. Noulibos, M. Taborelli, B. Teissandier, J.A. Uythoven, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wake fields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. Operation with increasingly higher bunch intensity, and narrow bunches, now requires improved ferrite screening. This will be implemented by additional conductors; however the good high-voltage behaviour of the kicker magnets must not be compromised by the supplementary screening. Extensive studies and optimisations have been carried out, to better satisfy the often conflicting requirements for low beam coupling impedance, fast magnetic field rise-time, high vacuum and good high voltage behaviour. A new configuration is proposed which reduces significantly the electric field associated with the screen conductors and the secondary electron yield of the surface of the ceramic tube. Results of high voltage test results are also presented.  
 
MOPWO024 Design of the CLIC Pre-Main Linac Collimation System 936
 
  • R. Apsimon, A. Latina, D. Schulte, J.A. Uythoven
    CERN, Geneva, Switzerland
  • J. Resta-López
    IFIC, Valencia, Spain
 
  A main beam collimation system, upstream of the main linac, is essential to protect the linac from particles in the beam halo. The proposed system consists of an energy collimation (EC) system just after the booster linac near the start of the Ring-to-Main Linac (RTML) transfer line and an EC and betatron collimation (BC) system at the end of the RTML, just before the main linac. The design requirements are presented and the cleaning efficiency of the proposed systems is analysed for different design choices.  
 
MOPWO025 Optics and Protection of the Injection and Extraction Regions of the CLIC Damping Rings 939
 
  • R. Apsimon, B. Balhan, M.J. Barnes, J. Borburgh, B. Goddard, Y. Papaphilippou, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The optics design of the injection and extraction regions for the CLIC damping rings is presented. The design defines the parameters for the kicker magnets and septa in these regions and has been optimised to minimise the length of the insertions within the parameter space of the system. Failure modes of the injection and extraction elements are identified and their severity assessed. Protection elements for the injection and extraction regions are optimised based on the conclusions of the failure mode analysis.  
 
MOPWO033 Analysis of LHC Transfer Line Trajectory Drifts 960
 
  • L.N. Drøsdal, W. Bartmann, H. Bartosik, C. Bracco, B. Goddard, V. Kain, Y. Papaphilippou, J.A. Uythoven, G. Vanbavinckhove, J. Wenninger
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, USA
 
  The LHC is filled from the SPS via two 3km long transfer lines. In the first years of LHC operation large trajectory variations were discovered. The sources of bunch-by-bunch and shot-by-shot trajectory variations had been identified and improved by the 2012 LHC run. The origins of the longer term drifts were however still unclear and significant time was spent correcting the trajectories. In the last part of the 2012 run the optics in the SPS was changed to lower transition energy. Trajectory stability and correction frequency will be compared between before and after the optics change in the SPS. The sources of the variations have now been identified and will be discussed in this paper. Remedies for operation after the long shutdown will be proposed.  
 
TUPME032 Update on Beam Induced RF Heating in the LHC 1646
 
  • B. Salvant, O. Aberle, G. Arduini, R.W. Aßmann, V. Baglin, M.J. Barnes, W. Bartmann, P. Baudrenghien, O.E. Berrig, A. Bertarelli, C. Bracco, E. Bravin, G. Bregliozzi, R. Bruce, F. Carra, F. Caspers, G. Cattenoz, S.D. Claudet, H.A. Day, M. Deile, J.F. Esteban Müller, P. Fassnacht, M. Garlaschè, L. Gentini, B. Goddard, A. Grudiev, B. Henrist, S. Jakobsen, O.R. Jones, O. Kononenko, G. Lanza, L. Lari, T. Mastoridis, V. Mertens, N. Mounet, E. Métral, A.A. Nosych, J.L. Nougaret, S. Persichelli, A.M. Piguiet, S. Redaelli, F. Roncarolo, G. Rumolo, B. Salvachua, M. Sapinski, R. Schmidt, E.N. Shaposhnikova, L.J. Tavian, M.A. Timmins, J.A. Uythoven, A. Vidal, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • H.A. Day
    UMAN, Manchester, United Kingdom
  • L. Lari
    IFIC, Valencia, Spain
 
  Since June 2011, the rapid increase of the luminosity performance of the LHC has come at the expense of increased temperature and pressure readings on specific near-beam LHC equipment. In some cases, this beam induced heating has caused delays whilie equipment cools down, beam dumps and even degradation of these devices. This contribution gathers the observations of beam induced heating attributable to beam coupling impedance, their current level of understanding and possible actions that are planned to be implemented during the long shutdown in 2013-2014.  
 
THPEA041 Performance Improvements of the SPS Internal Beam Dump for the HL-LHC Beam 3231
 
  • F.M. Velotti, O. Aberle, C. Bracco, E. Carlier, P. Chiggiato, J.A. Ferreira Somoza, B. Goddard, M. Meddahi, V. Senaj, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The SPS internal beam dump has been designed for beam specifications well below the HL-LHC ones, and for modes of operation which may not be adequate for the HL-LHC era. The present system suffers from several limitations in the allowed intensity and energy range, and its vacuum performance affects nearby high-voltage kicker systems. In this report the limitations of the internal beam dump system are reviewed, and the possible improvements compared. Preliminary upgrade proposals are presented, taking into consideration the expected operational HL-LHC parameters.