Author: Sapinski, M.
Paper Title Page
MOODB201 Proton-nucleus Collisions in the LHC 49
  • J.M. Jowett, R. Alemany-Fernandez, P. Baudrenghien, D. Jacquet, M. Lamont, D. Manglunki, S. Redaelli, M. Sapinski, M. Schaumann, M. Solfaroli Camillocci, R. Tomás, J.A. Uythoven, D. Valuch, R. Versteegen, J. Wenninger
    CERN, Geneva, Switzerland
  Following the high integrated luminosity accumulated in the first two Pb-Pb collision runs in 2010 and 2011, the LHC heavy-ion physics community requested a first run with p-Pb collisions. This almost unprecedented mode of collider operation was not foreseen in the baseline design of the LHC whose two-in-one magnet design imposed equal rigidity and, hence, unequal revolution frequencies, during injection and ramp. Nevertheless, after a successful pilot physics fill in 2012, the LHC provided 31 nb-1 of p-Pb luminosity per experiment, at an energy of 5.02 TeV per colliding nucleon pair, with several variations of the operating conditions, in early 2013. Together with a companion p-p run at 2.76 TeV, this was the last physics before the present long shutdown. We summarise the beam physics, operational adaptations and strategy that resulted in extremely rapid commissioning. Finally, we give an account of the progress of the run and provide an analysis of the performance.  
slides icon Slides MOODB201 [6.547 MB]  
MOPME071 Characterisation of Si Detectors for use at 2 Kelvin 643
  • M.R. Bartosik, C. Arregui Rementeria, B. Dehning, T. Eisel, C. Kurfuerst, M. Sapinski
    CERN, Geneva, Switzerland
  • V. Eremin, E. Verbitskaya
    IOFFE, St. Petersburg, Russia
  Funding: This research project has been supported by a Marie Curie Early Initial Training Network Fellowship of the European Community’s Seventh Framework Programme under contract nr PITN-GA-2011-289485-OPAC.
It is expected that the luminosity of the Large Hadron Collider (LHC) will be bounded in the future by the beam loss limits of the superconducting magnets. To protect the superconducting magnets of the high luminosity insertions an optimal detection of the energy deposition by the shower of beam particles is necessary. Therefore beam Loss Monitors (BLM) need to be placed close to the particle impact location in the cold mass of the magnets where they should operate in superfluid helium at 1.9 Kelvin. To choose optimal detectors n-type silicon wafers have been examined at superfluid helium temperature whilst under irradiation from a high intensity proton beam. The radiation hardness and leakage current of these detectors were found to be significantly improved at 1.9 Kelvin when compared to their operation at room temperature.
MOPWA034 Electron Tracking Simulations in the Presence of the Beam and External Fields 741
  • M. Patecki, B. Dehning, G. Iadarola, M. Sapinski
    CERN, Geneva, Switzerland
  The ionisation profile monitors installed in the CERN LHC and SPS, makes use of the ionisation of small quantities of injected neon gas by the circulating beam. The electrons produced are guided towards the readout system using a combination of electric and magnetic fields. However, in the presence of the beam field their tracks are modified and the resulting profile is distorted. The Geant4 physics simulation package has been used to simulate the ionisation process, while the CERN-developed PyECLOUD code has been used for tracking the resulting ionised particles. In this paper the results of simulations are compared with observations, with conclusions presented on the accuracy of the reconstruction of high-intensity beam profiles.  
MOPWA035 Beam Loss Studies for the CERN PS Booster using FLUKA 744
  • S. Damjanovic, B. Dehning, B. Mikulec, M. Sapinski
    CERN, Geneva, Switzerland
  In view of future upgrade plans, the beam loss monitor (BLM) coverage of the PS Booster (PSB) rings was reviewed. The response of two types of monitors, LHC-IC and LHC-LIC, has been studied with FLUKA at LINAC4 injection and PSB extraction energies. The goal of this study was to find out whether the current beam loss monitor coverage of two monitors at a certain location per PSB section was adapted to potential beam losses associated with a future Linac4 injection. The outcome of this study was a proposal to double the number of beam loss monitors in the PSB section by using a combination of horizontally oriented LHC-IC and LHC-LIC type monitors.  
TUPFI026 Investigations of the LHC Emittance Blow-Up during the 2012 Proton Run 1394
  • M. Kuhn
    Uni HH, Hamburg, Germany
  • G. Arduini, P. Baudrenghien, J. Emery, A. Guerrero, W. Höfle, V. Kain, M. Lamont, T. Mastoridis, F. Roncarolo, M. Sapinski, M. Schaumann, R.J. Steinhagen, G. Trad, D. Valuch
    CERN, Geneva, Switzerland
  About 30 % of the potential luminosity performance is lost through the different phases of the LHC cycle, mainly due to transverse emittance blow-up. Measuring the emittance growth is a difficult task with high intensity beams and changing energies. Improvements of the LHC transverse profile instrumentation helped to study various effects. A breakdown of the growth through the different phases of the LHC cycle is given as well as a comparison with the data from the LHC experiments for transverse beam size. In 2012 a number of possible sources and remedies have been studied. Among these are intra beam scattering, 50 Hz noise and the effect of the transverse damper gain. The results of the investigations are summarized in this paper. Requirements for transverse profile instrumentation for post LHC long shutdown operation to finally tackle the emittance growth are given as well.  
TUPME032 Update on Beam Induced RF Heating in the LHC 1646
  • B. Salvant, O. Aberle, G. Arduini, R.W. Aßmann, V. Baglin, M.J. Barnes, W. Bartmann, P. Baudrenghien, O.E. Berrig, A. Bertarelli, C. Bracco, E. Bravin, G. Bregliozzi, R. Bruce, F. Carra, F. Caspers, G. Cattenoz, S.D. Claudet, H.A. Day, M. Deile, J.F. Esteban Müller, P. Fassnacht, M. Garlaschè, L. Gentini, B. Goddard, A. Grudiev, B. Henrist, S. Jakobsen, O.R. Jones, O. Kononenko, G. Lanza, L. Lari, T. Mastoridis, V. Mertens, N. Mounet, E. Métral, A.A. Nosych, J.L. Nougaret, S. Persichelli, A.M. Piguiet, S. Redaelli, F. Roncarolo, G. Rumolo, B. Salvachua, M. Sapinski, R. Schmidt, E.N. Shaposhnikova, L.J. Tavian, M.A. Timmins, J.A. Uythoven, A. Vidal, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • H.A. Day
    UMAN, Manchester, United Kingdom
  • L. Lari
    IFIC, Valencia, Spain
  Since June 2011, the rapid increase of the luminosity performance of the LHC has come at the expense of increased temperature and pressure readings on specific near-beam LHC equipment. In some cases, this beam induced heating has caused delays whilie equipment cools down, beam dumps and even degradation of these devices. This contribution gathers the observations of beam induced heating attributable to beam coupling impedance, their current level of understanding and possible actions that are planned to be implemented during the long shutdown in 2013-2014.  
WEPME044 Generation of Controlled Losses in Milisecond Timescale with Transverse Damper in LHC 3025
  • M. Sapinski, T. Baer, V. Chetvertkova, B. Dehning, W. Höfle, A. Priebe, R. Schmidt, D. Valuch
    CERN, Geneva, Switzerland
  A controlled way of generating of beam losses is required in order to investigate the quench limits of the superconducting magnets in the LHC. This is especially difficult to achieve for losses with millisecond duration. A series of experiments using the transverse damper system has proven that such a fast loss can be obtained even in the case of rigid 4 TeV beams. This paper describes the optimisation of beam parameters and transverse damper waveform required to mimic fast loss scenarios and reports on extensive tracking simulations undertaken to fully understand the time and spatial structure of these losses. The application of this method to the final quench tests is also presented.  
THPEA044 Radiation Tolerance of Cryogenic Beam Loss Monitor Detectors 3240
  • C. Kurfuerst, C. Arregui Rementeria, M.R. Bartosik, B. Dehning, T. Eisel, M. Sapinski
    CERN, Geneva, Switzerland
  • V. Eremin, E. Verbitskaya
    IOFFE, St. Petersburg, Russia
  • C. Fabjan
    HEPHY, Wien, Austria
  • E. Griesmayer
    CIVIDEC Instrumentation, Wien, Austria
  At the triplet magnets, close to the interaction regions of the LHC, the current Beam Loss Monitoring system is sensitive to the particle showers resulting from the collision of the two beams. For the future, with beams of higher energy and intensity resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. Investigations are therefore underway to optimise the system by locating the beam loss detectors as close as possible to the superconducting coils of the triplet magnets. This means putting detectors inside the cold mass in superfluid helium at 1.9 K. Previous tests have shown that solid state diamond and silicon detectors as well as liquid helium ionisation chambers are promising candidates. This paper will address the final open question of their radiation resistance for 20 years of nominal LHC operation, by reporting on the results from high irradiation beam tests carried out at CERN in a liquid helium environment.  
THPEA045 Beam Induced Quenches of LHC Magnets 3243
  • M. Sapinski, T. Baer, M. Bednarek, G. Bellodi, C. Bracco, R. Bruce, B. Dehning, W. Höfle, A. Lechner, E. Nebot Del Busto, A. Priebe, S. Redaelli, B. Salvachua, R. Schmidt, D. Valuch, A.P. Verweij, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  In the years 2009-2013 LHC was operating with the beam energy of 3.5 and 4 TeV instead of the nominal 7 TeV, with the corresponding currents in the superconducting magnets also half nominal. To date only a small number of beam-induced quenches have occurred, with most being due to specially designed quench tests. During normal collider operation with stored beam there has not been a single beam induced quench. This excellent result is mainly explained by the fact that the cleaning of the beam halo worked very well and, in case of beam losses, the beam was dumped before any significant energy was deposited in the magnets. However, conditions are expected to become much tougher after the long LHC shutdown, when the magnets will be working at near nominal currents in the presence of high energy and intensity beams. This paper summarizes the experience to date with beam-induced quenches. It describes the techniques used to generate controlled quench conditions which were used to study the limitations. Results are discussed along with their implication for LHC operation after the first Long Shutdown.