Author: Moss, A.J.
Paper Title Page
WEPFI066 The RF System for the MICE Experiment 2848
 
  • K. Ronald, A.J. Dick, C.G. Whyte
    USTRAT/SUPA, Glasgow, United Kingdom
  • P.A. Corlett
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.J. DeMello, D. Li, S.P. Virostek
    LBNL, Berkeley, California, USA
  • A.F. Grant, A.J. Moss, C.J. White
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • P.M. Hanlet
    IIT, Chicago, Illinois, USA
  • C. Hunt, K.R. Long, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • T.H. Luo, D.J. Summers
    UMiss, University, Mississippi, USA
  • A. Moretti, R.J. Pasquinelli, D.W. Peterson, R.P. Schultz, J.T. Volk
    Fermilab, Batavia, USA
  • P.J. Smith
    Sheffield University, Sheffield, United Kingdom
  • T. Stanley
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • Y. Torun
    Illinois Institute of Technology, Chicago, IL, USA
 
  The International Muon Ionisation Cooling Experiment (MICE) is designed to demonstrate the effectiveness of ionisation cooling to reduce the phase space footprint of a muon beam, principally to allow the subsequent acceleration of muons for next generation colliders and/or neutrino factories. The experiment (and indeed any subsequent accelerator cooling channel based on the same principles) poses certain unusual requirements on its RF system, whilst the precision measurement of the ionisation cooling process demands special diagnostics. This paper shall outline the key features of the RF system, including the LLRF control, the power amplifier chain, distribution network, cavities, tuners and couplers, all of which must operate in a high magnetic field environment. The RF diagnostics which, in conjunction with the other MICE diagnostics, shall allow detailed knowledge of the amplitude and phase of the acceleration field during the transit of each individual Muon shall also be outlined.  
 
THPWA036 Implementation and Commissioning of the New Electron Beam Test Facility (EBTF) at Daresbury Laboratory for Industrial Accelerator System 3708
 
  • P.A. McIntosh, D. Angal-Kalinin, R.K. Buckley, S.R. Buckley, J.A. Clarke, B.D. Fell, A.R. Goulden, C. Hill, F. Jackson, S.P. Jamison, J.K. Jones, A. Kalinin, B.P.M. Liggins, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, T.C.Q. Noakes, Y.M. Saveliev, B.J.A. Shepherd, S.L. Smith, T.T. Thakker, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • N. Bliss, G. Cox, G.P. Diakun, A. Gleeson, L. Ma, B.G. Martlew, A.J. Moss, K. Robertson, M.D. Roper, R.J. Smith
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  The EBTF facility will provide enabling infrastructures targeted at the development and testing of novel and compact accelerator technologies, specifically through partnership with industry and aimed at addressing applications in medicine, health, security, energy and industrial processing. The facility has now been implemented at Daresbury Laboratory and the commissioning of the critical accelerator systems has been performed. The facility is now preparing for first exploitation with partnering industries that will be able to utilise the electron beam parameters available on EBTF to either demonstrate new techniques and/or processes or otherwise develop new technologies for future commercial realisation.  
 
TUPEA058 The Conceptual Design of CLARA, A Novel FEL Test Facility for Ultrashort Pulse Generation 1265
 
  • J.A. Clarke, D. Angal-Kalinin, R.K. Buckley, S.R. Buckley, P.A. Corlett, L.S. Cowie, D.J. Dunning, B.D. Fell, P. Goudket, A.R. Goulden, S.P. Jamison, J.K. Jones, A. Kalinin, B.P.M. Liggins, L. Ma, K.B. Marinov, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, A.J. Moss, B.D. Muratori, H.L. Owen, R.N.C. Santer, Y.M. Saveliev, R.J. Smith, S.L. Smith, E.W. Snedden, M. Surman, T.T. Thakker, N. Thompson, R. Valizadeh, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R. Appleby, M. Serluca, G.X. Xia
    UMAN, Manchester, United Kingdom
  • R.J. Barlow, A.M. Kolano
    University of Huddersfield, Huddersfield, United Kingdom
  • R. Bartolini, I.P.S. Martin
    Diamond, Oxfordshire, United Kingdom
  • N. Bliss, R.J. Cash, G. Cox, G.P. Diakun, A. Gallagher, D.M.P. Holland, B.G. Martlew, M.D. Roper
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • S.T. Boogert
    Royal Holloway, University of London, Surrey, United Kingdom
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • L.T. Campbell, B.W.J. MᶜNeil
    USTRAT/SUPA, Glasgow, United Kingdom
  • S. Chattopadhyay
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A. Lyapin
    JAI, Egham, Surrey, United Kingdom
  • D. Newton, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • V.V. Paramonov
    RAS/INR, Moscow, Russia
 
  The conceptual design of CLARA, a novel FEL test facility focussed on the generation of ultrashort photon pulses with extreme levels of stability and synchronisation is described. The ultimate aim of CLARA is to experimentally demonstrate, for the first time, that sub-coherence length pulse generation with FELs is viable. The results will translate directly to existing and future X-Ray FELs, enabling them to generate attosecond pulses, thereby extending the science capabilities of these intense light sources. This paper will describe the design of CLARA, pointing out the flexible features that will be incorporated to allow multiple novel FEL schemes to be proven.  
 
WEPFI065 The Commissioning of the EBTF S-band Photoinjector Gun at Daresbury Laboratory 2845
 
  • A.E. Wheelhouse, R.K. Buckley, S.R. Buckley, P.A. Corlett, J.W. McKenzie, B.L. Militsyn, A.J. Moss
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The first stage of the installation of the Electron Beam Test Facility (EBTF) at Daresbury Laboratory has been completed and a commissioning phase is presently underway. At the heart of the machine is a photoinjector based on a two and a half cell S-band RF gun incorporating a metallic photocathode, which is capable of delivering 4-6 MeV, low emittance, short electron pulses (10 - 250 pC). The photoinjector is driven by a UV light at 266 nm wavelength delivered by a laser system and is powered by a RF system incorporating a Low Level RF system, a high power RF modulator and a klystron. This paper describes the commissioning and conditioning of the photoinjector.  
 
WEPME052 LLRF Characterisation of the Daresbury International Cryomodule 3046
 
  • L. Ma
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • P.A. Corlett, A.J. Moss
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The 2-cavity Superconducting RF (SRF) Linac cryomodule of the Accelerators and Lasers in Combined Experiments (ALICE) located at Daresbury Laboratory will be replaced by a new International ERL Cryomodule in early 2013. The improved 7-cell, 1.3 GHz SRF cavities will be characterised and compared with the original 9-cell cavities. Tests will be performed by driving the cavities by a VCO-PLL loop so that Q measurements, microphonics sensitivity and Lorentz force detuning can be analysed. A digital LLRF system using the LLRF4 board developed by Larry Doolittle has been developed at Daresbury Laboratory and will be installed on the upgraded cryomodule. This system is capable of controlled cavity filling to reduce waveguide reflection voltage, feedback/feed forward control and adaptive beam loading compensation. The new cryomodule will be evaluated with both the analog LLRF system and the digital LLRF system to allow for performance comparison. Cavity operation with high QL will also be tested to discover the feedback control limit as a function of inherent microphonics. This paper sets out to discuss the qualification process, testing and results of the upgraded cryomodule installation.