Author: Franchi, A.
Paper Title Page
TUPWA019 Comparison of Tracking Simulation with Experiment on the GSI UNILAC 1763
 
  • X. Yin
    IHEP, Beijing, People's Republic of China
  • W.A. Barth, W.B. Bayer, L. Groening, I. Hofmann, S.G. Richter, S.G. Yaramyshev
    GSI, Darmstadt, Germany
  • A. Franchi
    CERN, Geneva, Switzerland
  • A.C. Sauer
    IAP, Frankfurt am Main, Germany
 
  In the European framework “High Intensity Pulsed Proton Injector” (HIPPI), the 3D linac code comparison and benchmarking program with experiment have been initialed. PARMILA and HALODYN are involved in this work. Both of these codes have been developed and used for linac design and beam dynamics studies. In this paper, we compare the simulation results with experiment results which was carried out on the UNILAC Alvarez DTL. And discuss physics aspects of the different linac design and beam dynamics simulation codes.  
 
MOPEA008 A Low-Emittance Lattice for the ESRF 79
 
  • L. Farvacque, N. Carmignani, J. Chavanne, A. Franchi, G. Le Bec, S.M. Liuzzo, B. Nash, T.P. Perron, P. Raimondi
    ESRF, Grenoble, France
 
  In the framework of its upgrade, the ESRF is looking at a new lattice for replacing the present Double Bend Achromat structure. This new lattice must have the same length and periodicity as the present one and keep the beamline source points unchanged. We will describe our design of an 844 m long lattice based on a 7-bend achromat. It is optimized for minimising the operation costs, in particular the wall-plug power, provides a large dynamic aperture allowing off-axis injection with the present ESRF injector, and gives an horizontal emittance of less than 200 pm at 6 GeV, thus considerably improving the brilliance and transverse coherence of the ESRF.  
 
MOPEA009 ESRF Operation and Upgrade Status 82
 
  • J.-L. Revol, J.C. Biasci, J-F. B. Bouteille, F. Ewald, L. Farvacque, A. Franchi, G. Gautier, L. Goirand, M. Hahn, L. Hardy, J. Jacob, J.M. Koch, M.L. Langlois, G. Lebec, J.M. Mercier, T.P. Perron, E. Plouviez, P. Raimondi, K.B. Scheidt, V. Serrière
    ESRF, Grenoble, France
 
  The European Synchrotron Radiation Facility (ESRF) is presently midway through the Upgrade Programme Phase I (2009-2015), which concerns its infrastructure, beamlines and X-ray source. This paper reports on the present operation performance of the source, highlighting the more recent developments. In this context, 8 insertion device straight sections have been lengthened from five to six metres; two of them operating with canted undulators. The lattice of one cell has been modified for a further increase to 7 metres allowing the test of a mini beta optics and latter the distribution of cavities. A second cryogenic permanent magnet undulator has been completed, which gives a factor of more than 2 in flux at high energy. The booster klystron-based radio frequency transmitter has been replaced by high power solid state amplifiers. Out of three prototypes of HOM damped cavities working at room temperature which have been received and tested, one has been successfully commissioned with beam. Subsequent to the upgrade of the beam position monitor system, a new orbit feedback has substantially reduced the orbit distortion induced by ID gap motions.  
 
TUOAB203 ESRF Upgrade Phase II 1140
 
  • J.-L. Revol, P. Berkvens, J.C. Biasci, J-F. B. Bouteille, N. Carmignani, F. Ewald, L. Farvacque, A. Franchi, L. Goirand, M. Hahn, L. Hardy, J. Jacob, J.M. Koch, G. Lebec, S.M. Liuzzo, B. Nash, T.P. Perron, E. Plouviez, P. Raimondi, K.B. Scheidt, V. Serrière
    ESRF, Grenoble, France
 
  Four years after the launch of the Upgrade Programme, the ESRF is midway through its first phase (2009-2015) and has defined the objectives for the ensuing second phase. The first phase paved the way to a new generation of nano-beam X-ray beamlines fed by an X-ray source itself substantially improved in terms of reliability, stability and brilliance. The second phase envisions a major upgrade of the source to best serve the science case of this new generation of beamlines. In December 2012, the ESRF Council endorsed Management's proposal to launch the technical design study of a new 7-bend achromat lattice. This new configuration will allow the ESRF storage ring to operate with a decrease in horizontal emittance by a factor of about 30 and a consequent increase in brilliance and coherence of the photon beam. The increase will be substantially higher at X-ray energies larger than 50 keV.  
slides icon Slides TUOAB203 [3.664 MB]