Author: Cary, J.R.
Paper Title Page
TUPEA068 Wake-field Reduction in Hybrid Photonic Crystal Accelerator Cavities 1289
  • D. A. Rehn
    Colorado University at Boulder, Boulder, Colorado, USA
  • C.A. Bauer, J.R. Cary, G.R. Werner
    CIPS, Boulder, Colorado, USA
  • J.R. Cary, C.D. Zhou
    Tech-X, Boulder, Colorado, USA
  Funding: This work is supported by the U.S. Dept. of Energy, grant DE-FG02-04ER41317.
Photonic crystals (PhCs) have attractive properties for manipulating electromagnetic radiation. In one application, PhCs are composed of a number of dielectric rods that can be arranged to make an accelerator cavity. These structures trap an accelerating mode and allow higher order modes to propagate out. Previous work showed that PhC structures allow excitation of unwanted transverse wake-fields that can disrupt the beam and limit luminosity levels. This work focuses on optimizing PhC cavities to reduce transverse wake-fields by minimizing the Q-factor of unwanted modes, while keeping the Q-factor of the accelerating mode high. The transverse wake-fields in the new optimized structures are compared with previously optimized structures and the CLIC cavity with HOM damping.
TUPFI081 Progress with Coherent Electron Cooling Proof-Of-Principle Experiment 1535
  • I. Pinayev, S.A. Belomestnykh, I. Ben-Zvi, K.A. Brown, J.C. Brutus, L. DeSanto, A. Elizarov, C. Folz, D.M. Gassner, Y. Hao, R.L. Hulsart, Y.C. Jing, D. Kayran, R.F. Lambiase, V. Litvinenko, G.J. Mahler, M. Mapes, W. Meng, R.J. Michnoff, T.A. Miller, M.G. Minty, P. Orfin, A. Pendzick, F. Randazzo, T. Rao, T. Roser, J. Sandberg, B. Sheehy, J. Skaritka, K.S. Smith, L. Snydstrup, R. Than, R.J. Todd, J.E. Tuozzolo, G. Wang, D. Weiss, M. Wilinski, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, J.R. Cary, K. Paul, B.T. Schwartz, S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • C.H. Boulware, T.L. Grimm, R. Jecks, N. Miller
    Niowave, Inc., Lansing, Michigan, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • M. Poelker
    JLAB, Newport News, Virginia, USA
  We conduct proof-of-the-principle experiment of coherent electron cooling (CEC), which has a potential to significantly boost luminosity of high-energy, high-intensity hadron colliders. In this paper, we present the progress with experimental equipment including the first tests of the electron gun and the magnetic measurements of the wiggler prototype. We describe current design status as well as near future plans.  
THYB101 Suppressing Transverse Beam Halo with Nonlinear Magnetic Fields 3099
  • S.D. Webb, D.T. Abell, D.L. Bruhwiler, J.R. Cary
    Tech-X, Boulder, Colorado, USA
  • V.V. Danilov
    ORNL, Oak Ridge, Tennessee, USA
  • S. Nagaitsev, A. Valishev
    Fermilab, Batavia, USA
  Funding: This work was supported in part by the US Department of Energy's Office of Science, Office of High Energy Physics, under grant No. DE-SC0006247.
Traditional space charge driven resonances, such as beam halo, arise due to the underlying linear nature of accelerator lattices. In this talk, we present initial results on a new class of intrinsically nonlinear lattices, which introduce a large tune spread naturally. The resulting nonlinear decoherence suppresses the onset of beam halo.
slides icon Slides THYB101 [63.510 MB]