Author: Minty, M.G.
Paper Title Page
MOPPC023 Polarization Transmission at RHIC, Numerical Simulations 178
 
  • F. Méot, M. Bai, C. Liu, M.G. Minty, V.H. Ranjbar
    BNL, Upton, Long Island, New York, USA
 
  Ray-tracing methods, using the computer code Zgoubi, have proven efficient for beam and spin dynamics simulations in RHIC (see earlier PAC and IPAC publications). More simulations and results are being produced, including spin code benchmarking and cross-checking, effects of strongest resonances and working point on transport of polarization, polarization with Run 9 and Run 11 measured ramp orbit and optics, polarization profiles, etc. The numerical methods involved are recalled, a status of the work is given.  
 
MOPPC028 Coherent Beam-Beam Effects Observation and Mitigation at the RHIC Collider 193
 
  • S.M. White, M. Bai, W. Fischer, Y. Luo, A. Marusic, M.G. Minty
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work partially supported by Brookhaven Science Associates, LARP, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In polarized proton operation in RHIC coherent beam-beam modes are routinely observed with beam transfer function measurements in the vertical plane. With the existence of coherent modes a larger space is required in the tune diagram than without them and stable conditions can be compromised for operation with high intensity beams as foreseen for future luminosity upgrades. We report on experiments and simulations carried out to understand the existence of coherent modes in the vertical plane and their absence in the horizontal plane, and investigate possible mitigation strategies.
 
 
MOPPC025 RHIC Polarized Proton Operation in Run 12 184
 
  • V. Schoefer, L. A. Ahrens, A. Anders, E.C. Aschenauer, G. Atoian, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, A. Dion, K.A. Drees, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, L.T. Hoff, H. Huang, R.L. Hulsart, A. Kirleis, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, F. Severino, D. Smirnov, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Successful RHIC operation with polarized protons requires meeting demanding and sometimes competing goals for maximizing both luminosity and beam polarization. In Run 12 we sought to fully integrate into operation the many systems that were newly commissioned in Run 11 as well as to enhance collider performance with incremental improvements throughout the acceleration cycle. For luminosity maximization special attention was paid to several possible source of emittance dilution along the injector chain, in particular to optical matching during transfer between accelerators. Possible sources of depolarization in the AGS and RHIC were also investigated including the effects of local coupling and low frequency (10 Hz) oscillations in the vertical equilibrium orbit during the RHIC ramp. The results of a fine storage energy scan made in an effort to improve store polarization lifetime are also reported in this note.  
 
MOPPD070 A SVD-based Orbit Steering Algorithm for RHIC Injection 523
 
  • C. Liu, A. Marusic, M.G. Minty, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The RHIC physics programs involve experiments with polarized proton and several species of ion beams. In the past, when switching between physics programs, first turn and circulating beam in RHIC was established manually by adjustments to the corrector dipoles for minimum beam loss. In this report, we introduce a new steering scheme based on an SVD algorithm which uses a single-pass orbit response matrix for first turn steering. The new scheme was implemented into the controls system and demonstrated successfully in Run-11. Establishing circulating beam using this automated approach has been shown to dramatically reduce the beam setup time.
 
 
MOPPD071 Error Localization in RHIC by Fitting Difference Orbit 526
 
  • C. Liu, M.G. Minty, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Many errors in an accelerator are evidenced as transverse kicks to the beam, which distort the beam trajectory. Therefore, the information of the errors are imprinted in the distorted orbits, which are different from what would be predicted by the optics model. In this paper, we introduce an algorithm for fitting the orbit based on an on-line optics model. We apply the algorithm to localize the location of the elusive source of vertical diurnal variations observed in RHIC, and analyze D0/Dx errors in local coupling measurement.
 
 
WEPPP083 Near Real-time Response Matrix Calibration for 10-Hz GOFB 2903
 
  • C. Liu, R.L. Hulsart, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The 10-Hz global orbit feedback, for damping the trajectory perturbation (~10 Hz) due to the vibrations of the triplets, is operational for injection and store in RHIC. The operation of the system has been performed using transfer functions between the beam position monitors and correctors obtained from the online optics model and a correction algorithm based on singular value decomposition (SVD). Calibration of the transfer functions by measuring the beam position oscillations while modulating the dedicated correctors has been carried out. The feedback results with model matrix and measured matrix will be compared.
 
 
WEPPP084 Weighted SVD Algorithm for Close-Orbit Correction and 10 Hz Feedback in RHIC 2906
 
  • C. Liu, R.L. Hulsart, A. Marusic, R.J. Michnoff, M.G. Minty, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Measurements of the beam position along an accelerator are typically treated equally using standard SVD-based orbit correction algorithms so distributing the residual errors, modulo the local beta function, equally at the measurement locations. However, sometimes a more stable orbit at select locations is desirable. In this paper, we introduce an algorithm for weighting the beam position measurements to achieve a more stable local orbit. The results of its application to close-orbit correction and 10-Hz orbit feedback will be shown and analyzed.
 
 
WEOBA01 Construction Progress of the RHIC Electron Lenses 2125
 
  • W. Fischer, Z. Altinbas, M. Anerella, E.N. Beebe, M. Blaskiewicz, D. Bruno, W.C. Dawson, D.M. Gassner, X. Gu, R.C. Gupta, K. Hamdi, J. Hock, L.T. Hoff, A.K. Jain, R.F. Lambiase, Y. Luo, M. Mapes, A. Marone, T.A. Miller, M.G. Minty, C. Montag, M. Okamura, A.I. Pikin, S.R. Plate, D. Raparia, Y. Tan, C. Theisen, P. Thieberger, J.E. Tuozzolo, P. Wanderer, S.M. White, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
In polarized proton operation, the RHIC performance is limited by the head-on beam-beam effect. To overcome these limitations two electron lenses are under construction. We give an overview of the progress over the last year. Guns, collectors and the warm electron beam transport solenoids with their associated power supplies have been constructed. The superconducting solenoids that guide the electron beam during the interaction with the proton beam are near completion. A test stand has been set up to verify the performance of gun, collector and some of the instrumentation. The RHIC infrastructure is being prepared for installation, and simulations continue to optimize the performance.
 
slides icon Slides WEOBA01 [7.672 MB]  
 
THPPP026 Experimental Effects of Orbit on Polarization Loss in RHIC 3788
 
  • V.H. Ranjbar
    Tech-X, Boulder, Colorado, USA
  • M. Bai, H. Huang, A. Marusic, M.G. Minty, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We are performing several experiments during the RHIC ramp to better understand the impact of orbit errors on the polarization at our current working point. These will be conducted by exciting specified orbit harmonics during the final two large intrinsic resonance crossing in RHIC during the 250 GeV polarized proton ramp. The resultant polarization response will then be measured.
 
 
THPPP029 Simultaneous Global Coupling and Vertical Dispersion Correction in RHIC 3794
 
  • C. Liu, Y. Luo, M.G. Minty
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Residual vertical dispersion on the order of ±0.2 m (peak to peak) has been measured at store energies for both polarized proton and heavy ion beams. The hypothesis is that this may have impact on the polarization transmission efficiency during the energy ramp, the beam lifetimes, and, especially for heavy ions, the dynamics aperture. An algorithm to correct global coupling and dispersion simultaneously using skew quads was developed for RHIC. Simulation results together with the measured coupling and dispersion functions before and after correction will be shown for both injection and store together with an assessment of overall collider performance improvement.
 
 
THPPD083 Analysis of Kicker Noise Induced Beam Emittance Growth 3710
 
  • W. Zhang, L. A. Ahrens, I. Blackler, M. Blaskiewicz, J.M. Brennan, W. Fischer, H. Hahn, H. Huang, N.A. Kling, M. Lafky, G.J. Marr, K. Mernick, J.-L. Mi, M.G. Minty, C. Naylor, T. Roser, J. Sandberg, T.C. Shrey, B. Van Kuik, A. Zelenski
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Over the last few years, physicists have suspected the presence of noise acting on the RHIC beams observable as occasional emittance growth at high beam energies. While the noise was sporadic in the past, it became more persistent during the run-11 setup period. An investigation diagnosed the source as originating from the RHIC abort kicker system. Once identified the issue was quickly resolved. We report in this paper the investigation result, circuit analysis, measured and simulated waveforms, solutions, and future plans.