Author: Kirkman, I.W.
Paper Title Page
MOPPR061 Computing Bunch Charge, Position, and BPM Resolution in Turn-by-Turn EMMA BPMs 924
 
  • A. Kalinin, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R.G. Borrell
    WareWorks Ltd, Manchester, United Kingdom
  • G. Cox
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • I.W. Kirkman
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The NS-FFAG electron model ‘EMMA’ and its Injection and Extraction Lines are equipped with a total of 53 EPICS VME BPMs*. In the BPMs, each opposite button signal pair is time-domain-multiplexed into one channel as a pulse doublet. The recording of turn-by-turn data into the BPM memory is triggered by the bunch itself on each of its passages. For each accelerating cycle, the BPMs deliver a snapshot of a turn-by-turn trajectory measured in each of 42 cells. Additional BPMs (two pairs) are used to obtain a Poincare map. We describe the EPICS architecture, and a set of Python data processing algorithms that are used to automatically set a BPM intensity range, to eliminate an error due to tails of the doublet pulses, to calculate the bunch charge and position, and, for a set of injections, to find the BPM resolution. We use three types of button pickup mappings** that allow: to eliminate bunch charge signal dependence on offset, to get a linear offset response, and to eliminate ‘quadrupole’ signal dependence on offset as well (which is used in resolution calculation). We present beam measurement results collected in 2011 runs.
* A. Kalinin et al., Proc. of IPAC’10, MOPE068, p. 1134, (2010.
** I. Kirkman, these proceedings.
 
 
MOPPR060 Calibration of the EMMA Beam Position Monitors: Position, Charge and Accuracy 921
 
  • I.W. Kirkman
    The University of Liverpool, Liverpool, United Kingdom
  • J.S. Berg
    BNL, Upton, Long Island, New York, USA
  • G. Cox
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  The accurate determination of transverse beam position is essential to understanding the performance of an accelerator system, and this is particularly the case with non-scaling FFAG machines such as EMMA, where, due to fundamental principles of design, the beam may deviate widely from the central beampipe axis. This paper describes the various modelling approaches taken for the three different button pickup assemblies used in EMMA, and the subsequent methods of calibration (‘mappings’) which allow beam position and charge to be deduced from the processed BPM signals. The use and validity of the modelling and mapping approach adopted is described, and the contributions to positional and bunch charge uncertainty arising from these procedures is discussed.  
 
TUPPD021 Orbit Correction in the EMMA Non-scaling FFAG – Simulation and Experimental Results 1455
 
  • D.J. Kelliher, S. Machida, S.L. Sheehy
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • J.S. Berg
    BNL, Upton, Long Island, New York, USA
  • J.K. Jones, B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • E. Keil
    Honorary CERN Staff Member, Berlin, Germany
  • I.W. Kirkman
    The University of Liverpool, Liverpool, United Kingdom
 
  The non-scaling FFAG EMMA (Electron Model for Many Applications) is currently in operation at Daresbury Laboratory, UK. Since the lattice is made up solely of linear elements, the betatron tune varies strongly over the momentum range according to the natural chromaticity. Orbit correction is complicated by the resulting variation in response to corrector magnet settings. We consider a method to optimise correction over a range of fixed momenta and discuss experimental results. Measurements of the closed orbit and response matrix are included.  
 
WEOAB01 New Results from the EMMA Experiment 2134
 
  • B.D. Muratori, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C.S. Edmonds, K.M. Hock, M.G. Ibison, I.W. Kirkman
    The University of Liverpool, Liverpool, United Kingdom
  • J.M. Garland, H.L. Owen
    UMAN, Manchester, United Kingdom
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  EMMA (Electron Model for Many Applications) is a prototype non-scaling electron FFAG hosted at Daresbury Laboratory. After demonstration of acceleration in the serpentine channel in April 2011, the beam study with EMMA continues to explore the large transverse and longitudinal acceptance and effects of integer tune crossing with slower rate on the betatron amplitude. Together with a comparison of detailed models based on measured field maps and the experimental mapping of the machine by relating the initial and final phase space coordinates. These recent results together with more practical improvements such as injection orbit matching with real-time monitoring of the coordinates in the transverse phase space will be reported in this paper.  
slides icon Slides WEOAB01 [2.120 MB]