

New Results from the EMMA Experiment

Bruno Muratori On behalf of the EMMA team

> Science & Technology Facilities Council Daresbury Laboratory

Contents

- Introduction
- Layout and Lattice
- Diagnostics
- Injection & Extraction
- Orbit Correction
- Slow integer tune crossing
- PRISM experiment on EMMA
- Summary

Applications of ns-FFAGs

Neutrino Factory

Proton & Carbon Therapy

High power proton driver

Dedicated Muon Source

Accelerator driven reactor

IPAC12 23/05/12

NATIONAL LABO

EMMA Goals

(1) Rapid acceleration with large tune variation (natural chromaticity)

(2) Serpentine acceleration (results from parabolic ToF)

(3) Map the transverse and longitudinal acceptances.

EMMA acceleration

Published in Nature Physics (01/03/12)

CORRELATED FERMIONS Transport out of equilibrium Acceleration without scaling

Accelerator Requirements

- Injection & extraction at all energies, 10 20 MeV
- Fixed energy operation to map closed orbits and tunes vs momentum
- Use equivalent momentum concept
- Many lattice configurations
 - Vary ratio of dipole to quadrupole fields
 - Vary frequency, amplitude and phase of RF cavities
- Map longitudinal and transverse acceptances with probe beam from ALICE
- EMMA is heavily instrumented with beam diagnostics

LAYOUT AND LATTICE

IPAC12 23/05/12

Bruno Muratori

ALICE

Accelerators and Lasers In Combined Experiments

Energy range	10 – 20 MeV
Lattice	F/D Doublet
Circumference	16.57 m
No of cells	42
Normalised transverse acceptance	3π mm-rad

BASROC CONFORM

Frequency (nominal)	1.3 GHz
No of RF cavities	19
Repetition rate	1 - 10 Hz
Bunch charge	20-60 pC single bunch

DIAGNOSTICS

IPAC12 23/05/12

Bruno Muratori

BPMs (MOPPR060 & MOPPR061)

- 50 μm resolution or smaller over a large aperture
- Controlled via EPICS
- Giving turn by turn information
- Computing
 - Position
 - Charge

Coupler

Detector card

INJECTION

IPAC12 23/05/12

Bruno Muratori

Injection line

- Dogleg to extract beam from ALICE
- Tomography (dual purpose)
- Minimise energy spread (done & < 0.05 % at 15 MeV)

Optimisation of injection

Septum

Kicker

Angle at end of SEPT determined from BPM offsets with quads OFF

- Use code to determine kicker strengths relatively close to pragmatically found strengths
- Can generate Poincaré map from BPM readouts in real time

►

15

Bruno Muratori

Real time Poincaré plot

Orbit oscillation: Y 1

X EMMA Poincare map

- vertical orbit [mm horizontal orbit [m -51 -10 -10 0-17 1-5-1 10-1-10 20 cell ce11 horizontal orbit [mn vertical orbit [mm] Orbit oscillation: X 2 Orbit oscillation: Y 2 10 -5 -10 -10 -51 -51 -10 15 20 15 10 10 20cell ce11 0.05 0.1 0.05 0 zp [mrad(?)] 2002 z yp [mrad(?)] 0 -0.1 -0.05 -0.15 -0.1 15 10 -10 y[mm] xſm xmin [mm]: 🔳 Number of cells: 4 42 ymin [mm]: 4 -10.0 Apply Number of turns: 4 20 xmax [mm]: ◀ ymax [mm]: 4 10.0 Number of sampling: 4 20 xpmin [mrad]: ypmin [mrad]: 4 -0.1 -0.15 with (=1) or without (=0) g&a: < ypmax [mrad]: 🔳 0.1 xpmax [mrad] 0.05 ► 1 (4&5) or 2 (36&37): 4 1 Exit Updated every ~second
- Use 2 BPMs after septum

Orbit oscillation:X 1

- **Kickers off**
- Updated every second
- Measure • momentum in both planes

IPAC12 23/05/12

Orbit Correction (TUPPD021) Error Sources

- Large closed orbit distorion in both horizontal and vertical planes (several mm). We would like to reduce this to increase the effective physical aperture.
- In the horizontal plane the stray field due to the septum is major source (0.5 mTm). Identified by checking the effect of the extraction septum on the orbit distoriton.
- In the vertical plane it is possible that stray fields in the vertical correctors are also a source.

closed orbit [mm] Effect of septum on orbit distortion (model)

Orbit Correction multiple momenta

- No conventional closed orbit in ns-FFAGs so minimise measured deviation with respect to target deviation
- Tune & phase advance change with momentum so correction for one energy may not work for all
- Solve using least squares method
- Three energies shown (14.3, 16.4 & 18 MeV/c)
 - Shift in D quads, orbit before and after correction

Residual distortion after correction vs. model

Orbit Correction Response matrix measurement

- Measuring the response matrix directly useful for correction.
- A single F quad was shifted in 0.1 mm steps and the closed orbit measured each time.
- Response given by slope of linear fit to data.
- Need to repeat for the other quadrupoles and vertical correctors to complete the response matrix.

Slow Integer Tune Crossing (MOPPD021)

- Inject bunch into RF bucket and let it undergo synchrotron oscillations
- Arrange lattice such that horizontal and / or vertical integer tunes are crossed during synchrotron oscillation
- Regions of tune space crossed at 0.2 2 MV / turn
- Inject at 12.5 MeV/c and look at equivalent momenta for different energies
- Look at amplitude growth and longitudinal phase space taking different voltage and phase as parameters which change tune crossing speed
 - Near stable fixed point
 - Far away from stable fixed point

Slow Integer Tune Crossing (2)

 Experimental results injecting beam near the stable fixed point and away from it

Slow Integer Tune Crossing (3)

 Simulation results injecting beam near the stable fixed point and away from it

EXTRACTION

IPAC12 23/05/12

Bruno Muratori

Extraction

- Can routinely extract the beam still very little charge
- Have plenty of diagnostics for further understanding the beam & what EMMA has done to it
- Projected emittance, slice emittance, bunch length, energy spread, slice energy spread

PRISM experiment on EMMA (TUPPD002)

- PRISM (Phase Rotated Intense Slow Muons) looks at muon to electron conversion (CLFV) as predicted by some unified theories
- Need a very small energy spread
- Want to use an FFAG (possibly non-scaling) to rotate the bunch in phase space

Pion Production Target and Capture Solenoid

PRISM Experiment on EMMA

- Test Non-Scaling optics for PRISM
- ¼ of the synchrotron oscillation takes ~3 turns in EMMA and ~6 turns in PRISM.
- Experimental steps:
 - Inject into EMMA at fixed energy from ALICE with different transverse amplitudes with RF on (voltage and phase set to stationary bucket) or use different equivalent energies with transverse amplitudes & RF on.
- Extract after ¼ (3/4) of synchrotron oscillation and measure energy and ToF.
- Scale magnets in extraction line according to energy via a script
- Analyse the data and reproduce the longitudinal phase space as a function of the transverse amplitude

PRISM Experiment on EMMA

YAG01 – 3/2 (top), 5/2 turns, RF on, scaling

YAG03 – 3/2 (top), 5/2 turns, RF on, scaling

IPAC12 23/05/12

Summary

- Design and construction phase of the project is complete
- Injection / extraction complicated but workable solution
- Have successfully accelerated !
- EMMA experiment still under way:
 - Many 1000s of turns at fixed energy and for various energies
 - Time of flight measurements / tunes have been measured at various quadrupole settings and various equivalent energies
 - Full orbit correction under way
 - Started detailed characterisation of the accelerator
 - Aperture studies & PRISM experiment to be completed

Apply lessons learnt to new applications! (MOEPPB003), (MOPPC032), (TUPPD020), (THPPD049)

Acknowledgements

All the team

- STFC Daresbury & Rutherford Appleton Labs , Cockcroft Institute, John Adams Institute, Imperial College staff
- International Collaborators
- Commercial Suppliers

Funding from UK Basic Technology Programme

Thank you for your attention !