Author: Jang, J.-H.
Paper Title Page
MOPPR039 Development of Beam Position Monitor for PEFP Linac and Beam line 864
 
  • J.Y. Ryu, Y.-S. Cho, J.-H. Jang, H.S. Kim, H.-J. Kwon, K.T. Seol
    KAERI, Daejon, Republic of Korea
 
  Funding: This work is supported by the Ministry of Education, Science and Technology of the Korean Government.
The development of the Beam Position Monitor (BPM) is in progress for the linac and beam lines of the Proton Engineering Frontier Project (PEFP). We choose a strip line BPM for the PEFP 20-MeV and 100-MeV beam lines in order to increase the sensitivity of the relatively long bunches in the beam lines. We also selected the same type BPM for the proton linac in the energy range between 20-MeV and 100-MeV. The prototype BPM was designed, fabricated and tested at KAERI site, where the 20-MeV linac was operated. To check the performance of the BPM, we performed the field mapping. The characteristics and test results of the BPM on the test bench as well as with 20-MeV proton beam will be presented in this paper.
 
 
WEPPC022 Elliptical SRF Cavity Design for PEFP Extension 2251
 
  • H.S. Kim, Y.-S. Cho, J.-H. Jang, H.-J. Kwon
    KAERI, Daejon, Republic of Korea
 
  Funding: * This work is supported by the Ministry of Education, Science and Technology of the Korean Government.
To increase the beam energy up to 1 GeV by extending a PEFP 100-MeV proton linac, a study on the superconducting RF linac is underway. SRF technology is chosen due to its operational flexibility and lower beam loss, as well as its high accelerating performance and low operating cost. Preliminary study on the beam dynamics shows that two types of cavity with geometrical beta of 0.50 and 0.74 can cover the entire energy range from 100 MeV to 1 GeV. Assuming the achievable peak surface electric field to be 30 MV/m and 35 MV/m for medium and high beta cavity, respectively, we designed the six-cell elliptical cavities by optimizing the cavity parameters such as peak field ratio, inter-cell coupling and r/Q through the geometrical parameter sweep. The details of the SRF cavity design for PEFP extension will be presented.
 
 
WEPPD033 Design of 100 MeV Proton Beam Irradiation Facility for the PEFP 100 MeV Linac 2579
 
  • S.P. Yun, Y.-S. Cho, J.-H. Jang, H.S. Kim, H.-J. Kwon, B.-S. Park, K.T. Seol, Y.-G. Song
    KAERI, Daejon, Republic of Korea
 
  Funding: This work is supported by the Ministry of Education, Science and Technology of the Korean Government.
The Proton Engineering Frontier Project (PEFP) will install a 100-MeV proton linear accelerator at Gyeong-ju site. Two target rooms ( TR 103, TR 23) will be prepared in the beam commissioning stage for 20-MeV and 100-MeV proton beams, respectively. To design the irradiation equipment in TR 103, we have investigated general propagation shape and spatial distribution of proton beam by using Monte carlo method, when 100 MeV proton beam extracted from vacuum in the beam lines through beam window. On the basis of this result, we have designed beam irradiation components and their configuration. The beam irradiation facility consists of beam dump, support frame, sample support and beam current monitor. To minimize residual radioactivity induced by incident proton beam, the graphite was selected as the material of beam dump and the aluminum alloy was selected as material of other irradiation equipment. These residual radioactivity of equipment were estimated by Monte carlo method. In this paper, the details of this irradiation equipment design are presented.
 
 
WEPPD051 Timing System for the PEFP 100-MeV Proton LINAC and Multipurpose Beamlines 2633
 
  • Y.-G. Song, Y.-S. Cho, J.-H. Jang, H.-J. Kwon, K.T. Seol
    KAERI, Daejon, Republic of Korea
 
  Funding: This work is supported by the 21C frontier R&D program in the ministry of science and technology of the Korean government.
The PEFP 100-MeV Linac requires precision synchronization of timing trigger signals for various accelerator and diagnostic components. A timing event system is selected as the main timing system, which is operated based on an event distribution system and can be constructed with COTS hardware. This system broadcasts the precise timing information globally. This paper describes the architecture, construction and performance of the PEFP timing event system.
 
 
WEPPP086 Positioning the 100MeV Linac and Magnets with Two Laser Trackers 2912
 
  • B.-S. Park, Y.-S. Cho, J.-H. Jang, D.I. Kim, H.S. Kim, H.-J. Kwon, J.Y. Ryu, K.T. Seol, Y.-G. Song, S.P. Yun
    KAERI, Daejon, Republic of Korea
 
  Funding: * This work is supported by the Ministry of Education, Science and Technology of the Korean Government.
Proton Engineering Frontier Project(PEFP) is developing a 100MeV high-duty-factor proton linac and 10 beam lines. The total length of PEFP linac is about 80m and each beam line is about 30m in length. The reference points were set up on the wall of the tunnel in the lst floor, the klystron gallery in the 2nd floor and the modulator gallery in the 3rd floor to built a survey network. Before the beam commissioning, the accelerator components and beam line magnets have been positioned within the tolerance limit by using two laser tracker systems. In this paper, the schemes for the alignment and the network survey are presented together with the results.
 
 
THPPP043 Installation of 100-MeV Proton Linac for PEFP 3832
 
  • Y.-S. Cho, S. Cha, J.S. Hong, J.-H. Jang, D.I. Kim, H.S. Kim, H.-J. Kwon, B.-S. Park, J.Y. Ryu, K.T. Seol, Y.-G. Song, S.P. Yun
    KAERI, Daejon, Republic of Korea
 
  Funding: This work was supported by the Ministry of Education, Science and Technology of the Korean Government.
The Proton Engineering Frontier Project (PEFP) at Korea Atomic Energy Research Institute (KAERI) is developing a 100-MeV proton linac in order to supply 20-MeV and 100-MeV proton beams to users for proton beam application. The linac consists of a 50-keV injector, a 3-MeV radio frequency quadrupole (RFQ) and a 100-MeV drift tube linac (DTL). The operation of the 20-MeV part of linac at Daejeon site was finished on November 2011. It was disassembled and moved to the Gyeongju site for installation as a low energy part of the linac. We completed the fabrication and test of the accelerating structures. The installation of the proton linac started in December 2011 at the new project site. The user service is scheduled for 2013 through the beam commissioning in 2012. This work summarized the installation status of the proton linac.
 
 
THPPP044 RF Set-up Scheme for PEFP DTL 3835
 
  • J.-H. Jang, Y.-S. Cho, H.S. Kim, H.-J. Kwon
    KAERI, Daejon, Republic of Korea
 
  Funding: This work was supported by the Ministry of Education, Science and Technology of the Korean Government.
The proton engineering frontier project (PEFP) is developing a 100-MeV proton linac which consists of a 50 keV injector, a 3-MeV radio frequency quadrupole (RFQ) and a 100-MeV drift tube linac (DTL). The installation of the linac was started in December 2011. The beam commissioning is scheduled for 2012. The phase scan signature method is a common technique to determine the rf set point including the amplitude and phase in DTL tanks. This work summarized the rf set-up scheme for PEFP DTL tanks by using the phase scan signature method.
 
 
THPPP045 Five Year Operation of the 20-MeV Proton Accelerator at KAERI 3838
 
  • H.-J. Kwon, Y.-S. Cho, J.-H. Jang, D.I. Kim, H.S. Kim, B.-S. Park, J.Y. Ryu, K.T. Seol, Y.-G. Song, S.P. Yun
    KAERI, Daejon, Republic of Korea
 
  Funding: This work was supported by the Ministry of Science and Technology of the Korean Government.
A 20-MeV proton linear accelerator has been operating since 2007 by Proton Engineering Frontier Project (PEFP) at Korea Atomic Energy Research Institute (KAERI), Daejeon site. The performance test of the accelerator itself has been done with limited operating conditions. In addition, the 20-MeV accelerator was used as a test bench of the 100-MeV accelerator components. Besides the machine study itself, it supplied proton beams to more than 1600 samples for users. The 20-MeV accelerator was disassembled at the end of 2011 and will be installed at Gyeong-Ju site as an injector for the 100-MeV linac in 2012. In this paper, the 5 year operation experiences of the 20-MeV linac at Daejeon site are summarized and the technical issues are discussed.
 
 
THPPR005 The Preliminary Test of a Digital Control System Based on the FPGA for a PEFP 120-keV RF Cavity 3975
 
  • Y.M. Li, S. Cha
    UST, Daejeon City, Republic of Korea
  • Y.-S. Cho, J.-H. Jang, H.S. Kim, H.-J. Kwon, Y.M. Li, K.T. Seol, Y.-G. Song
    KAERI, Daejon, Republic of Korea
 
  Funding: Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Ministry of Education, Science and Technology of the Republic of Korea.
PEFP developed a 120-keV RF cavity for their ion implantation applications. Due to ambient disturbances, the cavity’s resonance frequency may vary in long-term test. We designed a digital control system to change the frequency of the RF sources for tracking the cavity’s frequency variations. The digital control system has functions such as, phase shift, phase comparison, proportional-integral compensation, waveform generation and frequency/pulse modulation, and driving signal generator. Most of them are implemented digitally in a Virtex II 4000 Field Programmable Gate Array (FPGA). In this research we show the design and the preliminary test results of the digital control system.
* Work supported by the Ministry of Science and Technology
 
 
THPPR035 Design of Machine Protection System for the PEFP 100MeV Linac 4047
 
  • K.T. Seol, Y.-S. Cho, J.-H. Jang, D.I. Kim, H.S. Kim, H.-J. Kwon, B.-S. Park, J.Y. Ryu, Y.-G. Song, S.P. Yun
    KAERI, Daejon, Republic of Korea
 
  Funding: * This work is supported by the Ministry of Education, Science and Technology of the Korean Government.
The 100MeV proton linear accelerator of the Proton Engineering Frontier Project (PEFP) has been developed and will be installed in Gyeong-ju site. After the installation, the beam commissioning of the 100MeV linac will be performed in 2012. A machine protection system (MPS) to shut off beam and to protect the 100MeV machine has been designed. Hardwares for an RF interlock, a modulator interlock, beam loss monitors, fast closing valves for vacuum window faults and so on have been manufactured and tested. With a hard-wired protection for a fast interlock, beam should be shut off within a few μs from the faults. The operator interface for MPS has been also designed to monitor and reset the faults easily. The details of the MPS design for the 100MeV machine are presented.