Author: Gupta, R.C.
Paper Title Page
WEOBA01 Construction Progress of the RHIC Electron Lenses 2125
 
  • W. Fischer, Z. Altinbas, M. Anerella, E.N. Beebe, M. Blaskiewicz, D. Bruno, W.C. Dawson, D.M. Gassner, X. Gu, R.C. Gupta, K. Hamdi, J. Hock, L.T. Hoff, A.K. Jain, R.F. Lambiase, Y. Luo, M. Mapes, A. Marone, T.A. Miller, M.G. Minty, C. Montag, M. Okamura, A.I. Pikin, S.R. Plate, D. Raparia, Y. Tan, C. Theisen, P. Thieberger, J.E. Tuozzolo, P. Wanderer, S.M. White, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
In polarized proton operation, the RHIC performance is limited by the head-on beam-beam effect. To overcome these limitations two electron lenses are under construction. We give an overview of the progress over the last year. Guns, collectors and the warm electron beam transport solenoids with their associated power supplies have been constructed. The superconducting solenoids that guide the electron beam during the interaction with the proton beam are near completion. A test stand has been set up to verify the performance of gun, collector and some of the instrumentation. The RHIC infrastructure is being prepared for installation, and simulations continue to optimize the performance.
 
slides icon Slides WEOBA01 [7.672 MB]  
 
THPPD042 High Radiation Environment Nuclear Fragment Separator Dipole Magnet 3605
 
  • S.A. Kahn
    Muons, Inc, Batavia, USA
  • R.C. Gupta
    BNL, Upton, Long Island, New York, USA
 
  Funding: Supported in part by STTR Grant 4746 · 11SC06273
Magnets in the fragment separator region of the Facility for Rare Isotope Beams (FRIB) would be subjected to extremely high radiation and heat loads. Critical elements of FRIB are the dipole magnets which select the desired isotopes. Since conventional NiTi and Nb3Sn superconductors must operate at ~4.5 K, the removal of the high heat load generated in these magnets with these superconductors would be difficult. The coils for these magnets must accommodate the large curvature from the 30° bend that the magnets subtend. High temperature superconductor (HTS) have been shown to be radiation resistant and can operate in the 20-50 K temperature range where heat removal is an order of magnitude more efficient than at 4.5 K. Furthermore these dipole magnets must be removable remotely for servicing because of the extremely high radiation environment. This paper will describe the magnetic and conceptual design of these magnets.
 
 
THPPD043 Radiation-tolerant Multipole Correction Coils for FRIB 3608
 
  • S.A. Kahn
    Muons, Inc, Batavia, USA
  • R.C. Gupta
    BNL, Upton, Long Island, New York, USA
 
  Multipole correction insert coils with significant field strength are required inside the large aperture superconducting quadrupole magnets in the fragment separator section of the Facility for Rare Isotope Beams (FRIB). Correction coils made with copper do not create the required field and conventional low temperature superconductors are not practical in the fragment separator magnets which will operate at 40-50 K. The correction coils should be made of HTS as the main quadrupole coils are. There is a significant advantage to using HTS in these coils as it can withstand the high radiation and heat load that will be present. This paper will describe an innovative design suitable for coils with the complex end geometry of cylindrical coils. We will look at the forces on the corrector coils from the mail quadrupole fields and anticipate possible coil distortions.  
 
THPPD044 Fabrication and Testing of Curved Test Coil for FRIB Fragment Separator Dipole 3611
 
  • S.A. Kahn
    Muons, Inc, Batavia, USA
  • J. Escallier, R.C. Gupta, G. Jochen, Y. Shiroyanagi
    BNL, Upton, Long Island, New York, USA
 
  Funding: Supported in part by SBIR Grant 4746 · 11SC06273
A critical element of the fragment separator region of the Facility for Rare Isotope Beams (FRIB) is the 30° dipole bend magnet. Because this magnet will be subjected to extremely high radiation and heat loads, operation at 4.5 K would not be possible. High temperature superconductors which have been shown to be radiation resistant and can operated in the 30-50 K temperature range which is more effective for heat removal. An efficient design for this magnet would make use of coils that follow the curvature of the magnet. Winding curved coils with negative curvature are difficult as the coil tends to unwind during the process. As part of an R&D effort for this magnet we are winding a ¼ scale test coil for this magnet with YBCO conductor and are testing it at 77 K. This paper will discuss the winding process and the test results of this study.
 
 
THPPD048 15+ T HTS Solenoid for Muon Accelerator Program 3617
 
  • Y. Shiroyanagi, R.C. Gupta, P.N. Joshi, H.G. Kirk, R.B. Palmer, S.R. Plate, W. Sampson, P. Wanderer
    BNL, Upton, Long Island, New York, USA
  • D.B. Cline
    UCLA, Los Angeles, California, USA
  • J. Kolonko, R.M. Scanlan, R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: This work is supported by the U.S.Department of Energy under Contract No. DE-AC02-98CH10886 and SBIR contract DOE Grant Numbers DE-FG02-07ER84855 and DE-FG02- 08ER85037.
This paper will present the construction and test results of a ~10 T insert coil solenoid which is part of a proposed ~35 T solenoid being developed under a series of SBIR contracts involving collaboration between Particle Beam Lasers (PBL) and Brookhaven National Laboratory. The solenoid has an inner diameter of 25 mm, outer diameter of ~95 mm and a length of ~70 mm. It consists of 14 single pancake coils made from 4 mm wide 2G HTS conductor from SuperPower Inc., co-wound with a 4 mm wide, 0.025 mm thick stainless steel tape. These are paired into 7 double pancake coils. Each double pancake coil has been individually tested at 77 K before assembly in a complete solenoid. The solenoid is nearly ready for a high field test at ~4K.