Author: Giovannozzi, M.
Paper Title Page
MOPPC020 Field Tolerances for the Triplet Quadrupoles of the LHC High Luminosity Lattice 169
 
  • Y. Jiao, Y. Cai, Y. Nosochkov, M.-H. Wang
    SLAC, Menlo Park, California, USA
  • R. De Maria, S.D. Fartoukh, M. Giovannozzi, E. McIntosh
    CERN, Geneva, Switzerland
 
  Funding: This work is supported by the U.S. Department of Energy under contract # DE-AC02-76SF00515 and the US LHC Accelerator Research Program (LARP).
It has been proposed to implement an Achromatic Telescopic Squeezing (ATS) scheme* in the high luminosity LHC lattice to reduce the beta functions at the Interaction Points (IP) up to a factor of 8. As a consequence, the nominal 4.5-km peak beta functions reached in the inner triplets at collision will be increased by the same factor. This therefore justifies the installation of new, larger aperture superconducting triplet quadrupoles. These higher beta functions will enhance the effects of the triplet quadrupole field errors leading to smaller beam dynamic aperture. To maintain the acceptable dynamic aperture, the effects of the triplet multipole field errors must be re-evaluated, thus specifying new tolerances. Such a study has been performed for the so-called “4444” collision optics of the ATS scheme, where the IP beta functions are reduced by a factor of 4 in both planes with respect to a pre-squeezed value of 60 cm at two collision points. The dynamic aperture calculations were performed using SixTrack. The impact on the triplets’ field quality is studied and presented in details.
* S. Fartoukh, “An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade”, Proc. of IPAC11, p. 2088 (2011).
 
 
MOPPD059 Proposal of a Dummy Septum to Mitigate Ring Irradiation for the CERN PS Multi-Turn Extraction 499
 
  • M. Giovannozzi, H. Bartosik, D. Bodart, J. Borburgh, R.J. Brown, S. Damjanovic, S.S. Gilardoni, B. Goddard, C. Hernalsteens, M. Hourican, M. Widorski
    CERN, Geneva, Switzerland
 
  High activation of the magnetic extraction septum of the CERN PS machine was observed due to the losses of the continuous beam extracted via the Multi-Turn Extraction (MTE) method. The resulting activation is however incompatible with safe operation so a mitigation measure was required and found, namely the installation of a passive dummy septum to protect the actual one seems to provide the required reduction in activation in the extraction area. The shielded dummy septum is intended to absorb particles during the rise time of the MTE extraction kickers, avoiding the beam impact on the blade of the active magnetic extraction septum. The principle of the proposed modifications of the PS layout will be presented together with the studies aimed at finalising the new configuration.  
 
MOPPD060 Modified Extraction Scheme for the CERN PS Multi-Turn Extraction 502
 
  • M. Giovannozzi, S.S. Gilardoni, C. Hernalsteens, A. Lachaize, G. Métral
    CERN, Geneva, Switzerland
 
  High-activation of the extraction magnetic septum of the CERN PS machine was observed due to the losses of the continuous beam extracted via the Multi-Turn Extraction (MTE) method. A possible mitigation measure consists of using an existing electrostatic septum, located upstream of the extraction magnetic septum, to deflect the beam. This would highly decrease the beam losses, and hence the induced activation, during the rise time of the MTE kickers due to the reduced thickness of the electrostatic septum with respect to the magnetic one. The layout of this new extraction will be described in detail and the results of beam measurements presented.  
 
MOPPD061 LHC@home: a Volunteer Computing System for Massive Numerical Simulations of Beam Dynamics and High Energy Physics Events 505
 
  • M. Giovannozzi, F. Grey, A. Harutyunyan, N. Hoimyr, P.L. Jones, A. Karneyeu, M.A. Marquina, E. McIntosh, B. Segal, P. Skands
    CERN, Geneva, Switzerland
  • D. Lombraña González
    CCC, 1211Geneva 23, Switzerland
  • L. Rivkin, I. Zacharov
    EPFL, Lausanne, Switzerland
 
  Recently, the LHC@home system has been revived at CERN. It is a volunteer computing system based on BOINC which allows boosting the available CPU-power in institutional computer centers by the help of individuals that donate the CPU-time of their PCs. Currently two projects are hosted on the system, namely SixTrack and Test4Theory. The first is aimed at performing beam dynamics simulations, while the latter deals with the simulation of high-energy events. In this paper the details of the global system, as well a discussion of the capabilities of either project will be presented. Milestones of progress of the projects will also be discussed.  
 
MOPPD062 Aperture Measurements in the LHC Interaction Regions 508
 
  • S. Redaelli, M.C. Alabau Pons, R.W. Assmann, R. Bruce, M. Giovannozzi, G.J. Müller, M. Pojer, J. Wenninger
    CERN, Geneva, Switzerland
 
  The aperture of the LHC interaction regions is crucial for the LHC performance because it determines the smaller β* that can be achieved. The aperture has been measured at a maximum energy of 3.5 TeV and at different β* values, following optimized procedure to allow safe measurements at high energy. In this paper, the results of these aperture measurements, which are used as a reference for β* reach and crossing scheme estimates at the LHC interaction points, are presented.  
 
TUPPC077 Numerical Study of Beam Trapping in Stable Islands for Simple 2D Models of Betatronic Motion 1350
 
  • M. Giovannozzi, C. Hernalsteens
    CERN, Geneva, Switzerland
 
  An essential ingredient for the proposed Multi-Turn Extraction (MTE) at the CERN PS is the beam trapping in stable islands. The control of the trapping process is essential for the quality of the final beam in terms of intensity sharing and emittance. In this paper, the splitting process is studied quantitatively by means of numerical simulations performed on 2D model representing the horizontal non-linear betatronic motion. The results are reviewed and discussed in details.  
 
TUPPC078 Proposal of an Inverse Logarithm Scaling Law for the Luminosity Evolution 1353
 
  • M. Giovannozzi
    CERN, Geneva, Switzerland
  • C.H. Yu
    IHEP, Beijing, People's Republic of China
 
  A scaling law for the time-dependence of the dynamic aperture, i.e., the region of phase space where stable motion occurs, was proposed in previous papers, about ten years ago. It was showed that dynamic aperture has a logarithmic dependence on time, which would be suggested by some fundamental theorems of the theory of dynamical systems. Such a scaling law was recently extended also to the intensity evolution in a storage ring. In this paper, inspired by these results, and inverse logarithm scaling law for the luminosity in a circular collider is proposed. The law is then tested against the data from the LHC physics runs and also with some examples from other machines. The results are presented and discussed in details.  
 
TUPPC079 Tracking LHC Models with Thick Lens Quadrupoles: Results and Comparisons with the Standard Thin Lens Tracking 1356
 
  • M. Giovannozzi, H. Burkhardt, T. Risselada
    CERN, Geneva, Switzerland
 
  So far, the massive numerical simulation studies of the LHC dynamic aperture were performed using thin lens models of the machine. This approach has the clear advantage of speed, but it has also the disadvantage of requiring re-matching of the optics from the real thick configuration to the thin one. Furthermore, as the figure-of-merit for the re-matching is the agreement between the beta-functions for the two model, while the quadrupole gradients are left free parameters, the effect of the magnetic multipoles might be affected by this approach and in turn the dynamic aperture computation. In this paper the new approach is described and the results for the dynamic aperture are compared with the old approach, including detailed considerations on the CPU-time requirements.  
 
TUPPC080 Investigations of Scaling Laws of Dynamic Aperture with Time for Numerical Simulations including Weak-Strong Beam-Beam Effects 1359
 
  • M. Giovannozzi
    CERN, Geneva, Switzerland
  • E. Laface
    ESS, Lund, Sweden
 
  A scaling law describing the time-dependence of the dynamic aperture, i.e., the region of phase space where stable motion occurs, was proposed in previous papers about ten years ago. It was shown that dynamic aperture has a logarithmic dependence on time, which would be suggested by some fundamental theorems of the theory of dynamical systems. So far, such a law was applied to single-particle effects only, i.e., the only source of non-linear effects was the magnetic imperfections. In this paper an attempt is made to extend the scaling law to the case of weak-strong beam-beam effects. The results of numerical simulations performed, including both non-linear magnetic imperfections and weak-strong beam-beam effects, are presented and discussed in detail.  
 
TUPPC081 First Experimental Observations from the LHC Dynamic Aperture Experiment 1362
 
  • M. Giovannozzi, M. Albert, G.E. Crockford, S.D. Fartoukh, W. Höfle, E.H. Maclean, A. Macpherson, L. Ponce, S. Redaelli, H. Renshall, F. Roncarolo, R.J. Steinhagen, E. Todesco, R. Tomás, W. Venturini Delsolaro
    CERN, Geneva, Switzerland
  • R. Miyamoto
    BNL, Upton, Long Island, New York, USA
 
  Following intensive numerical simulations to compute the dynamic aperture for the LHC in the design phase, the successful beam commissioning and the ensuing beam operations opened the possibility of performing beam measurements of the dynamics aperture. In this paper the experimental set-up and the first observations based on the few experimental sessions performed will be presented and discussed in detail.  
 
TUPPC082 Non-linear Beam Dynamics Tests at the CERN PS in the Framework of the Multi-turn Extraction 1365
 
  • M. Giovannozzi, G. Arduini, J.M. Belleman, S.S. Gilardoni, C. Hernalsteens, A. Lachaize, G. Métral, Y. Papaphilippou
    CERN, Geneva, Switzerland
 
  In the framework of the CERN PS Multi-Turn Extraction several campaigns of measurements probing the non-linear beam dynamics have been carried out. These measurements range from the measurement of non-linear chromaticity to phase space portraits, de-coherence and re-coherence measurements, secondary island tune etc. In this paper these measurements will be reviewed and the results presented and discussed in details.  
 
TUPPR027 Study of Multipolar RF Kicks from the Main Deflecting Mode in Compact Crab Cavities for LHC 1873
 
  • A. Grudiev, J. Barranco, R. Calaga, R. De Maria, M. Giovannozzi, R. Tomás
    CERN, Geneva, Switzerland
 
  A crab cavity system is under design in the frame work of the High Luminosity LHC project. Due to transverse space constraints on one hand and the RF frequency requirements on the other hand, the design of the crab cavities has to be compact. This results in the crab cavity shape being far from axially symmetric and, as a consequence, higher order multipolar components of the main deflecting mode are non-zero. In this paper, multipolar RF kicks from the main deflecting mode have been calculated in the compact crab cavities for LHC. They are compared to the multipolar error in magnetic elements of LHC. The influence of the RF kicks on the beam dynamics has been investigated and possible acceptable tolerances are presented.  
 
WEEPPB014 The Magnetic Model of the LHC during the 3.5 TeV Run 2194
 
  • E. Todesco, N. Aquilina, M. Giovannozzi, M. Lamont, F. Schmidt, R.J. Steinhagen, M. Strzelczyk, R. Tomás
    CERN, Geneva, Switzerland
  • N.J. Sammut
    University of Malta, Information and Communication Technology, Msida, Malta
 
  The magnetic model of the LHC is based on a fit of the magnetic measurements through equations that model the field components (geometric, saturation, persistent) at different currents. In this paper we will review the main results related to the magnetic model during the run of the LHC in 2010-2011: with a top energy of 3.5 TeV, all components of the model but the saturation are visible. We first give an estimate of the reproducibility of the main components and multipolar errors as they can be deduced from beam measurements, i.e. orbit, tune, chromaticity, beta beating and coupling. We then review the main results relative to the decay at injection plateau, dependence on powering history, and snapback at the beginning of the ramp for both tune and chromaticity. We discuss the precision obtained in tracking the magnets during the ramp, where the persistent current components gradually disappear. We conclude by presenting the behaviour of the quadrupoles model during the squeeze. A list of the major changes implemented during the operation together with what are considered as the main open issues is given.