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Abstract
A scaling law describing the time-dependence of the dy-

namic aperture, i.e., the region of phase space where stable
motion occurs, was proposed in previous papers, about ten
years ago. It was showed that dynamic aperture has a log-
arithmic dependence on time, which would be suggested
by some fundamental theorems of the theory of dynamical
systems. So far, such a law was applied to single-particle
effects, only, i.e., the only source of non-linear effects was
the magnetic imperfections. In this paper an attempt of ex-
tending the scaling law to the case of weak-strong beam-
beam effects is made. The results of numerical simula-
tions performed including both non-linear magnetic imper-
fections and weak-strong beam-beam effects are presented
and discussed in detail.

INTRODUCTION
The evolution of the dynamic aperture (DA) with time is

a topic of clear interest in the study of dynamical systems,
in general, and of accelerator physics, in particular. A scal-
ing law for the DA could be used to extrapolate results ob-
tained by means of numerical simulations performed over
a limited number of turns to much longer times. In the past,
this topic was considered and some results in this direction
obtained [1, 2]. Through the analysis of the optimal way to
compute the DA from numerical simulation data [3] the so-
called survival plots allowed finding a rather simple scaling
law for DA.
Assuming a polar grid in normalised phase space

x = r cos θ y = r sin θ with 0 < θ < π/2, (1)

if r(θ; N) stands for the last stable amplitude up toN turns
in the direction θ, then the dynamic aperture reads:

D(N) =
2

π

∫ π/2

0

r(θ; N) d θ ≡< r(θ; t) > . (2)

According to the results reported in Refs. [1, 2]

D(N) = D∞ +
b

[log N ]
κ , (3)

where D∞ represents the asymptotic value of the ampli-
tude of the stability domain, while b and κ are additional
parameters. These three quantities can be obtained by fit-
ting the results of numerical simulations.
The interesting point is that such a parametrisation is
∗Now at ESS, Lund, Sweden.

compatible with the hypothesis that the phase space can be
partitioned into two regions. A central core, with r < D∞,
where KAM [4] surfaces confine the motion, thus induc-
ing a stable behaviour apart for a set of small measure
where Arnold diffusion can take place. An outer part, with
r > D∞, where chaotic motion occurs and the escape rate
to infinity is given by a Nekhoroshev-like estimate [5, 6]
such as

N(r) = N0 exp
(r∗

r

)1/κ

(4)

where N(r) is the number of turns that are estimated to be
stable for particles with initial amplitude smaller than r.
Interestingly enough, two regimes were identified [2]:

i) in 4D systems the three quantities D∞, b, κ are all pos-
itive [1]. This corresponds to having a stable region in
phase space for arbitrarily long times. ii) In 4D systems
with tune modulation or off-momentum dynamics it is pos-
sible to have no stable region even for a finite number of
turns [2]. This corresponds to having the following cases:

{
D∞ > 0 κ < 0 b < 0

D∞ < 0 κ > 0 b < 0
(5)

Therefore, rather solid arguments exist to make the scal-
ing law (3) not completely phenomenological. However,
the standard Hamiltonian model assumed in Refs. [5, 6]
is based on polynomial non-linearities, which is certainly
the correct assumption for describing the transverse mo-
tion of a charged particle in a lattice including magnetic
non-linearities. On the other hand, the beam-beam force
has an intrinsically different form and a special treatment
is needed to obtain results of the type [5, 6] and, to our
best knowledge, such a result is not yet available in the lit-
erature. Nevertheless, it is also clear that the extension of
the scaling law (3) to the case in which also beam-beam
effects are included seems reasonable. One of the charac-
teristics of the Nekhoroshev-like estimates is to provide a
description of the dynamics in terms of pseudo-diffusive
behaviour. This is certainly compatible with beam-beam
(see, e.g., Refs. [7, 8, 9, 10]). In the end, one could also
use a purely phenomenological approach and simply check
whether the scaling law (3) is capable of describing the evo-
lution of DA when beam-beam effects are included.
It is worth recalling that Eq. 3 has been recently applied

to propose a scaling law for the intensity evolution in a
hadron machine [11] and also in the interpretation of the
luminosity evolution in a hadron collider [12].
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SIMULATION RESULTS
The simulations are based on the weak-strong, 4D beam-

beam model implementated in the SixTrack code [13]. The
lattice used is the one describing the nominal LHC [14]
and two different configurations have been considered: i)
at injection energy the beams are separated by a crossing
angle and a parallel separation in the orthogonal plane; ii)
at top energy the beams are colliding in all four experimen-
tal points with the nominal crossing angle. The measured
magnetic field errors are included in the simulations [15].
In addition to the head-on collisions, 20, 21 (for IP2/8 or
IP1/5, respectively) long range collisions are included at
each side of the collision point. Finally, the bunch intensity
Nb has been varied to observe the changes in the behaviour
of the DA.
In terms of parameters for the numerical simulations, 59

phase space angles have been considered to provide a de-
tailed mapping of the phase space. Furthermore, each di-
rection has been probed by distributing 30 pairs of initial
conditions every 2 σ amplitude range. The momentum off-
set of the initial conditions was set to 0.75 × 10−3 and to
0.27×10−3 for injection and top energy, respectively, while
the maximum number of turns was Nmax = 106.
In Fig. 1 the DA has been plotted in the normalised phase

space for the case of injection. The red markers represent
the initial conditions that are stable up toNmax, while blue

Figure 1: DA for injection energy and Nb = 1.15× 1011 p
(upper) and 1.7× 1011 p (lower). Beams are separated, but
the beam-beam effect is active. The red and blue markers
stand for stable or unstable initial conditions, respectively.

markers represent unstable conditions. Furthermore, the
size of the blue markers is proportional to the number of
stable turns. Two values of Nb have been used, namely

1.15 × 1011 (upper) and 1.7 × 1011 (lower), representing
the so-called nominal and ultimate intensities, respectively.
The stable area around the origin was not simulated in or-
der to reduce the CPU-time required. The effect of Nb is
visible. The key result is shown in Fig. 2, where the DA vs.
time from numerical simulations is compared with the re-
sult of the fitted function (3). The agreement is remarkable
for both intensities, with a clear reduction of DA in depen-
dence on Nb. The slight difference between the fit and the
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Figure 2: DA vs. time at injection energy (situation plotted
in Fig. 1) including the proposed fit. The agreement is very
good apart for large-amplitude initial conditions.

data for large amplitudes should not be too surprising as the
law (3) has to be considered as a good asymptotic model,
i.e., for large number of turns.
At top energy the beams are no more separated and real

collisions are taking place. The DA is plotted in Fig. 3
for three typical bunch intensities, with a weak intensity of
0.1 × 1011 added to the nominal and ultimate ones. The
shrinking of the stable area is visible. Also for this config-
uration the key result is plotted in Fig. 4. The agreement is
once more remarkable. In this case, the fit reproduces both
the large as well the low amplitude behaviour of the DA vs.
time.
Finally, in Table 1 the key fit parameters are reported for

the five cases presented in this paper. It is worth mention-
ing that κ is not really computed from a fit, rather a scan
over κ is performed and the value retained is the one that
minimises the fit residues. Two key features are found by
inspecting Table 1: all the fit parameters are positive for
the injection energy case, while this is no more the case
at top energy. This means that while at injection energy a
well-defined asymptotic value of DA, namely D∞, exists,
at top energy the pseudo-diffusive behaviour is such that
D(N̄) = 0 for a finite N̄ .

CONCLUSIONS
A scaling law for the evolution of the DA has been pro-

posed and successfully applied to the case of numerical
simulations of the nominal LHC machine including mag-
netic non-linearities and weak-strong beam-beam effects.
Such a scaling, derived from Nekhoroshev theorem for
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Figure 3: DA for top energy and colliding beams for Nb =
0.1 × 1011 p (upper), 1.15 × 1011 p (middle) and 1.7 ×

1011 p (lower). The red and blue markers stand for stable
and unstable initial conditions, respectively.

Table 1: Fit parameters for the proposed scaling law (3).
The error associated with κ is 0.05. The first two rows
correspond to injection energy, while the remaining three
to top energy. Nb is expressed in units of 1011 p.

Nb D∞ b κ

1.15 9.789 ± 0.004 10231± 80 5.90
1.70 9.098 ± 0.006 335 ± 2 3.60
0.10 19.1 ± 0.1 −0.119± 0.003 −2.20
1.15 −10.3 ± 0.2 61.1 ± 0.6 0.70
1.70 0.23 ± 0.05 47.7 ± 0.3 1.15

polynomial non-linearities, is currently a simple extension
of what was found earlier for the case of beam dynamics
under the influence of magnetic multipoles. Theoretical
work is required to extend the results of Ref. [6]. On an-
other front, it will be interesting to analyse the behaviour
of the fit parameters as a function of the main physical pa-
rameters, e.g., Nb, and crossing angle.
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Figure 4: DA vs. time at collision energy (situation plotted
in Fig. 3) including the proposed fit. The agreement is very
good, and the effect due to Nb is clearly visible.
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