Author: Zhang, W.
Paper Title Page
TUPHA012 New Control System for LAPECR2 394
 
  • J.J. Chang, S. An, X.J. Liu, P.P. Wang, Y.J. Yuan, W. Zhang
    IMP/CAS, Lanzhou, People's Republic of China
 
  Lanzhou All Permanent magnet ECR ion source No.2 (LAPECR2) is the ion source for 320 kV multidiscipline research platform for highly charged ions. Its old control system has been used for nearly 12 years and some prob-lems have been gradually exposed and affected its daily operation. A set of PLC from Beckhoff company is in charge of the control of magnet power supplies, diagnos-tics and motion control. EPICS and Control System Studio (CSS) as well other packages are used in this facility as the control software toolkit. Based on these state-of-the-art technologies on both hardware and software, this paper designed and implemented a new control system for LAPECR2. After about half a year of running, the new control reflects its validity and stability in this facility.  
poster icon Poster TUPHA012 [0.332 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA082 The Timing System of HIRFL-CSR 601
 
  • W. Zhang, S. An, S.Z. Gou, K. Gu, P. Li, Y.J. Yuan, M. Yue
    IMP/CAS, Lanzhou, People's Republic of China
 
  This article gives a brief description of the timing system for Heavy Ion Research Facility in Lanzhou- Cooler Storage Ring (HIRFL-CSR). It introduces in detail mainly of the timing system architecture, hardware and software. We use standard event system architecture. The system is mainly composed of the events generator (EVG), the events receiver (EVR) and the events fan-out module. The system is the standard three-layer structure. OPI layer realizes generated and monitoring for the events. The intermediate layer is the events transmission and fan out. Device control layer performs the interpretation of the events. We adopt our R&D EVG to generate the events of virtual accelerator. At the same time, we have used our own design events fan-out module and realize distributed on the events. In equipment control layer, we use EVR design based on FPGA to interpret the events of different equipment and achieve an orderly work. The Timing System realize the ion beam injection, acceleration and extraction.  
poster icon Poster TUPHA082 [0.394 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA193 Vacuum Control System of SSC-Linac 884
 
  • X.J. Liu, S. An, J.J. Chang, Y. Chen, J.Q. Wu, W. Zhang
    IMP/CAS, Lanzhou, People's Republic of China
 
  SSC-Linac is a linear accelerator injector of SSC in HIRFL. The vacuum control system is based on EPICS which is a real-time distributed control software. The Labview real-time VIs and EPICS VIs were used to design Input/Output Controller(IOC).The different kinds of CRIO modules were adopt in device layer, which can monitor the serial port data from vacuum gauges and contol vacuum valves. The whole control system can acquire vacuum data, control vacuum devices remotely, make the pressure value of the vacuum gauge and vacuum valve interlocked. It also keeps the equipment work stable and the beam has a high quality.  
poster icon Poster TUPHA193 [0.952 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA193  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPHA010 Upgrade the Control System of HIRFL-CSR Based-on EPICS 1356
 
  • S. An, J.J. Chang, L. Ge, X.J. Liu, P.P. Wang, J.Q. Wu, W. Zhang, Y.B. Zhou
    IMP/CAS, Lanzhou, People's Republic of China
 
  Control system of HIRFL-CSR accelerator is now upgrading to new architecture based on Experimental Physics and Industrial Control System (EPICS). Design and implement power supply subsystem, data distribution subsystem, data acquisition subsystem, etc. This paper describes the design and implementation of the control system and introduce the next work for upgrading synchronization subsystem and middle/high level applications.  
poster icon Poster THPHA010 [1.283 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)