Author: James, S.
Paper Title Page
TUPHA166 New Developments for the HDB++ TANGO Archiving System 801
 
  • L. Pivetta, G. Scalamera, G. Strangolino, L. Zambon
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • R. Bourtembourg, S. James, J.L. Pons, P.V. Verdier
    ESRF, Grenoble, France
  • S. Rubio-Manrique
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  TANGO HDB++ is a high performance event-driven archiving system which stores data with micro-second resolution timestamps, using archivers written in C++. HDB++ currently supports MySQL and Apache Cassandra back-ends but could be easily extended to support additional back-ends. Since the initial release many improvements and new features have been added to the HDB++. In addition to bug-fixes and optimizations, the support for context-based archiving allows to define an archiving strategy for each attribute, specifying when it has to be archived or not. Temporary archiving is supported by means of a time-to-live parameter, available on a per-attribute basis. The Cassandra back-end is using Cassandra TTL native feature underneath to implement the time-to-live feature. With dynamic loading of specific libraries switching back-ends can be done on-the-fly and is as simple as changing a property. Partition and maintenance scripts are now available for HDB++ and MySQL. The HDB++ tools, such as extraction libraries and GUIs, followed HDB++ evolution to help the user to take full advantage of the new features.  
poster icon Poster TUPHA166 [1.957 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA166  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRAPL07 The ESRF's Extremely Brilliant Source - a 4th Generation Light Source 2010
 
  • J.M. Chaize, R. Bourtembourg, F. Epaud, A. Götz, S. James, G. Mugerin, F. Poncet, J.L. Pons, N.T. Tappret, E.T. Taurel, P.V. Verdier
    ESRF, Grenoble, France
 
  After 20 years of operation, the ESRF has embarked upon an extremely challenging project - the Extremely Brilliant Source (ESRF - EBS) . The goal of this project is to construct a 4th generation light source storage ring inside the existing 844m long tunnel. The EBS will increase the brilliance and coherence by a factor of 100 with respect to the present ESRF storage ring. A major challenge is to keep the present ring operating 24x7 while designing and pre-constructing all the elements of the new ring. This is the first time a 4th generation light source will be constructing inside an existing tunnel. This paper concentrates on the control system aspects. The control system is 100% TANGO based. The paper will list the main challenges of the new storage ring like the Hot Swap Powersupply, the new timing system, how reliable operation was maintained while modernizing the injector control system and preparing the new storage ring control system, the new historical database, and how extensive use was made of software simulators achieve this.
http://www.esrf.fr/files/live/sites/www/files/about/upgrade/documentation/whitepaper-upgrade-phaseII.pdf
P. Raimondi, "The ESRF Low Emittance Upgrade", IPAC'16, , Busan, Korea, May 2016, Paper WEXA01
 
video icon Talk as video stream: https://youtu.be/Wtocf0pieP0  
slides icon Slides FRAPL07 [9.634 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-FRAPL07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)