MOM3 —  Mini orals with poster   (19-Oct-15   17:00—17:30)
Chair: R. Bacher, DESY, Hamburg, Germany
Paper Title Page
MOM302 Python Software for Measuring Wavelength at Optically Pumped Polarized Ion Source (OPPIS) 72
 
  • P. K. Kankiya, J.P. Jamilkowski
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Often diagnostic tools are packaged with proprietary software and it is challenging to integrate with native environment. The HighFinesse Angstrom Wavemeter used at OPPIS experiment for laser wavelength measurement is controlled using commercial software not supported by RHIC style controls. This paper will describe the integration of such a complex system  and use of python for cross platform data acquisition.
 
slides icon Slides MOM302 [1.013 MB]  
poster icon Poster MOM302 [1.189 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-ICALEPCS2015-MOM302  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOM303
Designing Control Systems for Change: Supporting a Facility's Science and Technology Evolution  
 
  • S.M. Hartman
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.
A control system designed for today's large experimental physics projects is likely to be in operation for decades. Over the lifetime of a facility, computer hardware technologies will change, custom electronics designs will face obsolescence, and software and computing technologies will evolve. The control system must be designed to work from the onset of operations, while also adapting to changes in technology, requirements and science priorities. Using the ongoing upgrade of the Spallation Neutron Source beam line controls and data acquisition systems as a case study, this paper will offer lessons learned for future control system designs.
 
slides icon Slides MOM303 [5.557 MB]  
poster icon Poster MOM303 [28.788 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOM305 Control System for a Dedicated Accelerator for SACLA Wide-Band Beam Line 74
 
  • N. Hosoda, T. Fukui
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • M. Ishii
    JASRI/SPring-8, Hyogo-ken, Japan
  • T. Ohshima, T. Sakurai, H. Takebe
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  This paper report about a control system for a dedicated accelerator for SACLA wide-band beam line (BL1), requirements, construction strategies, and present status. At the upgrade plan of SACLA BL1, it was decided to move SCSS test accelerator, which operated from 2005 to 2013, to the upstream of the BL1 in the undulator hall. The control system of the accelerator had to be operated seamlessly with SACLA, to reuse old components as much as possible, and to avoid stopping SACLA user experiments during the start up. The system was constructed with MADOCA which is already used at SACLA. In the control components, VME optical DIO cards and chassis for magnet power supplies were reused after cleaning and checking that there was no degradation of quality. The RF conditioning of the accelerator was started in in October 2014, while SACLA user experiments were going on. A data collection system was prepared, myCC, having a MADOCA compatible interface and an independent database from SACLA. It enabled efficient start up and after enough debugging, the data collection was successfully merged to SACLA in January 2015. Beam commissioning of the accelerator is planned for autumn 2015.  
slides icon Slides MOM305 [0.969 MB]  
poster icon Poster MOM305 [0.368 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-ICALEPCS2015-MOM305  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOM306 Status of the PAL-XFEL Control System 79
 
  • C. Kim, S.Y. Baek, H.-S. Kang, J.H. Kim, K.W. Kim, I.S. Ko, G. Mun, B.R. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Pohang accelerator laboratory (PAL) started an x-ray free electron laser project (PAL-XFEL) in 2011. In the PAL-XFEL, an electron beam with 200 pC will be generated from a photocathode RF gun and will be accelerated to 10 GeV by using a linear accelerator. The electron beam will pass through undulator section to produce hard x-ray radiation. In 2015, we will finish the installation and will start a commissioning of the PAL-XFEL. In this paper, we introduce the PAL-XFEL and explain present status of it. Details of the control system will be described including a network system, a timing system, hardware control systems and a machine interlock system.  
slides icon Slides MOM306 [1.842 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-ICALEPCS2015-MOM306  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOM308 XFEL Machine Protection System (MPS) Based on uTCA 82
 
  • S. Karstensen, M.E. Castro Carballo, J.M. Jäger, M. Staack
    DESY, Hamburg, Germany
 
  For the operation of a machine like the 3 km long linear accelerator XFEL at DESY Hamburg, a safety system keeping the beam from damaging components is obligatory. This machine protection system (MPS) must detect failures of the RF system, magnets, and other critical components in various sections of the XFEL as well as monitor beam and dark current losses, and react in an appropriate way by limiting average beam power, dumping parts of the macro-pulse, or, in the worst case, shutting down the whole accelerator. It has to consider the influence of various machine modes selected by the timing system. The MPS provides the operators with clear indications of error sources, and offers the possibility to mask any input channel to facilitate the operation of the machine. In addition, redundant installation of critical MPS components will help to avoid unnecessary downtime. This paper summarizes the requirements on the machine protection system and includes plans for its architecture and for needed hardware components. It will show up the clear way of configuring this system - not programming. Also a look into the financial aspects (manpower / maintenance / integration) will be presented.  
slides icon Slides MOM308 [1.492 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-ICALEPCS2015-MOM308  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOM309 Upgrade of the Beam Monitor System for Hadron Experimental Facility at J-PARC 86
 
  • Y. Morino, K. Agari, Y. Sato, A. Toyoda
    KEK, Tokai, Ibaraki, Japan
 
  Hadron experimental facility(HD hall) at Japan Proton Accelerator Research Complex (J-PARC) is designed to provide high intensity beam for particle and nuclear physics. Slow-extracted proton beam(2 second spill per 6 seconds) from main ring is injected to a production target at the HD hall. On May 2013, proton beam was instantaneously extracted to the HD hall in 5 milliseconds. The short pulse beam melted the production target. After the accident, the beam operation was stopped at the HD hall. For the recovery of the HD hall, we upgraded the beam line of the HD hall in many aspects to sustain the abnormal beam injection. The monitor system of the beam line was also upgraded to detect the abnormal beam injection. The rate monitor of second particles from the target was prepared to detect short pulse injection. The beam profile monitor was upgraded to measure at several times during one pulse to detect a sudden change of the beam profile. The beam loss monitor was upgraded to read out always to detect unexpected high intensity beam promptly. These signals were included in the interlock system. In this paper, the detail of the beam monitor system upgrade will be reported.  
slides icon Slides MOM309 [1.984 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-ICALEPCS2015-MOM309  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOM310 Nonlinear System Identification of Superconducting Magnets of RHIC at BNL 90
 
  • P. Chitnis
    Stony Brook University, Stony Brook, New York, USA
  • K.A. Brown
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Quench Detection System (QDS) of RHIC detects the Superconducting (SC) magnet quenches by voltage sensing. The real-time voltage across the SC magnet is compared with a predicted voltage from a behavioral model, a deviation from which triggers the quench event and energy extraction. Due to the limitations of the magnet model, many false quench events are generated that affect the RHIC availability. This work is targeted towards remodeling the magnets through nonlinear system identification for the improvement in QDS reliability. The nonlinear electrical behavior of the SC magnets is investigated by statistical data analysis of magnet current and voltage signals. Many data cleaning techniques are employed to reduce the noise in the observed data. Piecewise regression has been used to examine the saturation effects in magnet inductance. The goodness-of-fit of the model is assessed by field testing and comprehensive residual analysis. Finally a new model is suggested for the magnets to be implemented for more accurate results.
 
slides icon Slides MOM310 [0.826 MB]  
poster icon Poster MOM310 [0.985 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-ICALEPCS2015-MOM310  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOM311 ALMA Release Management: A Practical Approach 94
 
  • R. Soto, N. Saez, T.C. Shen
    ALMA Observatory, Santiago, Chile
  • J.P.A. Ibsen
    ESO, Santiago, Chile
 
  The ALMA software is a large collection of modules, which implements the functionality needed for the observatory day-to-day operations. The main ALMA software components include: array/antenna control/correlator, submission/processing of science proposals, telescope calibration and data archiving. The implementation of new features and improvements for every software subsystem must be coordinated by considering developers schedule, observatory milestones and testing resources available to verify new software. This paper describes the software delivery process adopted by ALMA since the construction phase and its evolution until these days. It also presents the acceptance procedure implemented by the observatory for validating the software used for science operations. Main roles of the software delivery and acceptance processes are mentioned on this paper by including their responsibility at the different development and testing phases. Finally, some ideas are presented about how the model should change in the near future by considering the operational reality of ALMA Observatory.  
slides icon Slides MOM311 [3.476 MB]  
poster icon Poster MOM311 [16.928 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-ICALEPCS2015-MOM311  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOM312
A Model-Based Approach to Motion Control Design at the Australian Synchrotron  
 
  • N. Afshar
    ASCo, Clayton, Victoria, Australia
  • C. Glover, P. Kappen, P. Martin, E.L. Shepherd
    SLSA, Clayton, Australia
  • M. Stephenson
    ANSTO, Menai, New South Wales, Australia
 
  The sophistication and flexibility of versatile motion controllers often implies complex and potentially difficult configuration and tuning processes. This demands highly specialised engineering and system management efforts to meet performance requirements and process maintainability. To address these challenges, a model-based approach is used to provide a framework for generalising and formulating motion control systems which classifies applications and suggests optimum motor configuration and tuning based on design inputs and specifications. The framework also includes a dynamic Simulink® model which models the GeoBrick® and the PMAC configuration, stepper/servo motors, mechanical stages, encoders and cabling. This model is used for tuning and validating configurations with modeled motors, load conditions, encoders, etc. at design time prior to purchases. The model and framework developed has been applied successfully to more than 110 motion axes at different beamlines to design or upgrade motion controllers resulting in highly improved reliability and performance. Configuration management, deployment and commissioning processes are significantly improved at the same time.  
slides icon Slides MOM312 [10.209 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)