
ALMA RELEASE MANAGEMENT: A PRACTICAL APPROACH

R. Soto, T. Shen, N. Saez, Joint ALMA Observatory, Santiago, Chile
J. Ibsen, European Southern Observatory, Santiago, Chile

Abstract
 The ALMA software is a large collection of modules,
which implements the functionality needed for the
observatory day-to-day operations. The main ALMA
software components include: array/antenna
control/correlator, submission/processing of science
proposals, telescope calibration and data archiving. The
implementation of new features and improvements for
every software subsystem must be coordinated by
considering developers schedule, observatory milestones
and testing resources available to verify new software.
This paper describes the software delivery process
adopted by ALMA since the construction phase and its
evolution until these days. It also presents the acceptance
procedure implemented by the observatory for validating
the software used for science operations. Main roles of
the software delivery and acceptance processes are
mentioned on this paper by including their responsibility
at the different development and testing phases. Finally,
some ideas are presented about how the model should
change in the near future by considering the operational
reality of ALMA Observatory.

OVERVIEW
 The software delivery process of ALMA Observatory
has passed for several transformations aligned to
observatory’s project lifecycle. Thus, it changed from a
static model (with few and big releases) to a dynamic
schema with emphasis at the testing phases and reducing
the integration time required for a new release. This paper
will present the evolution of the ALMA Software
Delivery Process and Release Management by describing
the advantages/disadvantages of the models adopted.
Final section will give an overview how the model will
change in the near future.

SOFTWARE RELEASES IN THE PAST
 The ALMA Observatory started its commissioning
phase at the Chilean site during the end of 2009. It
considered some antennas installed at the high site
(5000m) and the deployment of the first quadrant for the
baseline correlator. Additionally, the assembly,
integration and verification activities (AIV) related to the
new array elements delivered by manufacture vendors [1],
continued more intensely at the Operation Support
Facilities (3000m). This period was very intensive for the
computing group, since simultaneous activities had to be
supported in parallel. Commissioning process by using

direct observing systems (control and correlator software,
front-end archive, etc.) was required at the Observatory
and, at the other hand, the preparation, integration and
testing of pre and post observing software (Phase 1 and
Phase 2 proposal submission, time allocation committee
support, data processing software, etc.) was demanded as
an Early Science task, planned to be started at the end of
2010. In terms of software releases, a cycle of 6 months
for the delivery of new features was established, which
included capabilities for the observing systems and the
proposal handling process as well. These cycles
considered several phases (with a timeline predefined)
before declare the software as accepted for AIV activities
or Early Science observations as described at [2]: Code
Freeze Period, Initial Integrated Testing, Initial Site
Testing, Computing Release, Routine Use, Acceptance
Testing and Integrated Testing. The model worked
relatively well during early construction stages when the
activities were concentrated at the ALMA Test Facilities
[3]. Software was commissioned by using prototypes
antennas and there was time available with the
operational hardware for testing purposes. However, this
approach was deficient when commissioning and AIV
activities started at the operational site. There were less
access to the hardware for testing and more pressure for
having new software capabilities working in order to
continue progressing into array commissioning.

 Preliminary testing was initially executed in a simulated
environment, which was not able to reproduce the exact
behavior of the operational hardware. So, even a full
battery of tests were executed, which considered new
functionality and regression tests, there were not enough
to deliver a mature software for the site testing. Many
bugs were detected using the operational hardware, which
increases the cost of correct them [4]. On the other hand,
the big amount of features delivered per release also
produced additional problems to distill the software.
Thus, the stabilization of a new release took about two
months after the integration and testing team delivered it.
After that, science group should proceed with the routine
use and acceptance testing, but the long integration period
introduced big delays in the whole commissioning
process. Given the current scenery, the integrated
computing team looks for changes in the software
delivery process adapting the model to the current reality.

MOM311 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

94C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Systems Engineering, Project Management

THE CURRENT MODEL

Incremental Release Process
 The model currently adopted differs from the previous
one in terms of periodicity of the incremental releases
delivered for science commissioning. We moved from 6-
month period to bi-monthly schedule, which consider
testing and integration as part of the cycle. Thus, a more
frequent software delivery also implied that less features
and improvements were included per release facilitating
the integration, testing and debugging of the detected
problems. Of course, these features and improvements are
scheduled according to the observatory's milestone such
as software needed for proposal submission, projects
rating and starting of the observing cycle. This model also
included the definition of different phases with formal
handover between each one. Three phases were
established:

1. Phase A - Developer Integration &
Testing: Aimed to demonstrate that functionality is
implemented as requested but based in unit tests. All
tests must pass to move toward verification phase.

2. Phase B - Verification: Aimed to tests new
functionality using both (largely) simulation and
(when required) production environments. This
include regression tests suite [5] for detecting bug
and provide fixes to them. All tests must pass to
proceed with the validation phase; otherwise
features are "de-scoped".

3. Phase C - Validation: Aimed to validate additional
capabilities and scientific data content. Performance
and robustness aspects are also analyzed as part of
validation tests (new releases should always behave
better or at least no worse than the previous ones).
Software acceptance requires both correct
verification and validation test results.

 The introduction of these formal phases also produced
an optimization of the development and testing resources
at the computing and science areas. A calendar with dates
for every phase was prepared and circulated to
developers, computing and science testers [6]. Also
independent phases were parallelized (as showed in figure
1) which optimize the available resources. Release
contents are fully tracked by using Atlassian tool called
JIRA [7]. Every feature/improvement is registered in
separate tickets, which also contain the testing results of
every phase.

Figure 1: Incremental releases lifecycle.

 Formal responsibilities were defined at the computing
and science teams related to the planning and delivery of

the software. Thus, the release and acceptance manager
roles were introduced. The first one is responsible for the
planning and delivery of the incremental releases and the
completion of the verification phase. Acceptance manager
represents the clients or users point of view. He/she is
responsible for reviewing the planning of the releases and
make sure they are according to the Observatory's
milestones and science needs. Acceptance manager has
also the responsibility for the execution of the validation
phase and prepare the acceptance plan for the software
which has successfully passed verification and validation
phases.

Acceptance Process
 Once several incremental releases have been
successfully verified and validated, they must be accepted
in order to be used for official science activities (no
commissioning ones) such as: Early Science observations,
hardware commissioning, etc. The acceptance manager
carries out the acceptance process and it is usually held
very close to an observatory milestone. It consider the
following steps:

a) Test Report Review (TRR): This meeting has a
goal the revision of the verification/validation
reports for all incremental releases included at the
acceptances. Important issues are also identified and
the schedule to solve them is defined. It can be more
than a TRR before the acceptance if there are many
issues still pending to be solved. Once everything is
OK from computing and science point of view, then
the candidate branch is created and we move to the
acceptance testing period.

b) Acceptance Testing Period: During this period the
final tests are performed over the candidate branch.
The idea is not repeat the verification or validation
phases but do a light regression tests of all
applications to be deployed on production servers.
These tests are performed in an isolated
environment, which consider a recent image of the
production DB in order to do them as much realistic
as possible.

c) Acceptance Review: The acceptance meeting
considers the revision of the acceptance tests report
and also the revision of the pending items. During
this meeting the final decision is taken about to
deploy the new software in production servers or
postpone it until all the critical items had been
solved.

d) Software Deployment in Production
Environment: This step considers the coordination
with the different ALMA centers around the world
for the deployment of the new software. It also
included the changes into the database model needed
for the new version of the applications. Usually it
involves some downtime at the applications affected
in order to deploy new versions. All the work is
coordinated by the deployment manager who has to
submit a report at the end with the status of the new
software.

Proceedings of ICALEPCS2015, Melbourne, Australia MOM311

Systems Engineering, Project Management

ISBN 978-3-95450-148-9

95 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

 The Acceptance Manager is also responsible for
preparing the acceptance calendar, which is aligned to the
observatory’s milestone and consider enough time to
proceed with all the steps defined above. The acceptance
calendar also contains the information about the
incremental releases included into the acceptance. The
calendar is distributed between scientists and developers
and it represents the official information for any software
planning activities.

The Software Change Control Board
 Once a software release has been accepted, there is a
formal process for introducing changes into the accepted
branch. These requests can be associated to a software
patch (related to a bug fix), to a change in the
functionality requirements (called release change
request), to a modification of the database schema
(usually requested by software applications) or to a set of
minor improvements for a specific application (called a
service release). All software requests must be informed
to the Release Manager by submitting a JIRA ticket [7].

 A Software Change Control Board (SCCB) is a
committee compound of various project stakeholders that
typically fulfills the requirements for such a process. The
group is formed for representative from computing,
science and engineering sides. The SCCB (or a subset of
them constituted mandatorily by the Release Manager and
Acceptance Manager) will meet once a week to discuss
and decide on outstanding software requests. Additional
meetings may be called as required. Emergency requests
need to be addressed immediately by a procedure
properly established.

 The decisions will normally be made by consensus. The
nominated Acceptance Manager signs off all decisions. If
no mutual agreement can be reached, the Release and
Acceptance Managers together the head of the computing
section responsible for the implementation must at least
agree upon any decision. Otherwise the issue needs to be
escalated to ALMA Observatory Management.

EVOLUTION TOWARD AN AGILE
APPROACH

 The ALMA observatory has concluded its construction
phase and it is moving to full operations model. The
transition implies more significance at the system
robustness and stability in order to implement continuous
observation model and a reduction at the time dedicated
for commissioning and verification. For this reason, the
software delivery process should be adjusted to the
current observatory state. Thus, given the hardware
restrictions, simulation capabilities will have a relevant
role in the verification phase. The number of new
features/improvements per release will be reduced but the
emphasis at the software robustness becomes essential.
System stability turns into a critical point in order to

maintain observatory working most of the time, therefore
the downtime due to new software releases must be
strictly controlled.

The New Approach
 Based in the situation mentioned above, an agile
approach for the software delivery process should be
adopted by the observatory. The proposal is being
developed and it expected to be implemented in the
coming years. Basically, this approach is based in the
existence of a stable branch, which is patched for
verification, and validation of new capabilities.
Developers should commit functionality in separate
branches and verification team should patch stable branch
for verification purposes. If verification passed, Science
testers should validate same functionality. After
successfully validation, the patch can be integrated at the
stable branch and considered ready to be used for
observatory's activities. This model differs of the previous
one, since integration is controlled by verification team
instead of developers. Stability should be also granted
since less functionality is included per iteration. Features,
which do not pass verification or validation phases are
rejected and scheduled for another iteration. Observatory's
technical times are also optimized since only features,
which have passed simulation tests, are considered to be
verified with operational hardware. Despite this approach
has several advantages in terms of software stability and
accelerate the process for having new capabilities in
production environment (by eliminating or reducing
software acceptance process), it also require some
fundamental changes in the paradigm currently adopted.
It considers more discipline at the development,
verification and validation teams in order to accomplish
with the tight schedule, optimizing resources available
and delivering new capabilities according to the
observatory needs. The figure 2 illustrates the core of the
new process where the science branch (accepted) is
created after the verification and validation phases have
been completed successfully.

Figure 2: Proposal for agile approach.

CONCLUSIONS
 This paper presented the evolution of the release
management process in agreement with the life cycle of
ALMA Observatory. There was a transition from a
traditional and static development model, suitable for
early construction phases, toward a dynamical one, which

MOM311 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

96C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Systems Engineering, Project Management

considered commissioning restrictions. This new model
takes into account the delivery of lite releases in terms of
features but more stable as a whole. This also increased
the frequency of the development cycles according to the
observatory’s milestones and decreased the
integration/testing time required before the science
commissioning phases. Formal phases were introduced
as part of the process and responsible for every stage were
properly identified and designated. This facilitated the
process control, allowing a deterministic schedule for the
entire cycle. There was also more emphasis for
controlling changes over commissioned releases used for
official science activities. The creation of a control board
for approving/rejecting changes, evidenced the
importance of maintain operational software stable as
much as possible. The results showed at the end
demonstrated this was the correct path since ALMA
commissioning phase has been successfully performed
from the software point of view.

 However, there is still another important milestone to be
completed by the Observatory in the coming years: the
full operations model that will demand a new adaptation
of the software delivery process in order to fulfill the
operational requirements. Thus, an agile approach was
proposed that considers the robustness and stability of the
system as a mandatory goal over the introduction of new
capabilities. It is expected that several improvements at
the system simulation and continuous integration
environment must be developed as part of the
implantation of the model.

 The experience reveals that the implementation of a
new model is not a straightforward process. It will require
several technical improvements but, more important and
difficult, is the adaptation of human capital (developers,
testers, validators) to new paradigm.

REFERENCES
[1] B. E. Glendenning, and G. Raffi., “The ALMA

computing project: initial commissioning”, Proc
SPIE, Vol. 7019, 701902 (2008).

[2] B. E. Glendenning, J. Ibsen , G. Kosugi , G. Raffi,
“ALMA software management and deployment”,
Proceedings of SPIE Vol. 7740, 77401L (2010).

[3] B. Lopez, R. Araya, N. Barriga, et al., “Software
regression testing: practical experience at the ALMA
test facility”, Proceedings of SPIE Vol. 7019,
70192X (2008).

[4] V. Gonzalez, M. Mora, R. Araya, et al., “First year of
ALMA site software deployment: where everything
together”, Proceedings of SPIE Vol. 7737, 77371Z
(2010).

[5] R. Soto, T. Shen, J. Ibsen, et al., “ALMA software
regression tests: the evolution under an operational
environment”, Proceedings of SPIE Vol. 6541,
84511R (2012).

[6] T.C. Shen, J.P.A. Ibsen, R.A. Olguin, R. Soto,
“Status of ALMA Software”, Proceedings of
ICALEPCS 2011, Grenoble, France.

[7] JIRA Atlassian planning and tracking tool,
 https://jira.atlassian.com

Proceedings of ICALEPCS2015, Melbourne, Australia MOM311

Systems Engineering, Project Management

ISBN 978-3-95450-148-9

97 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

