Author: Lefevre, T.     [Lefèvre, T.]
Paper Title Page
MOPF04 Results of the High Resolution OTR Measurements at KEK and Comparison with Simulations 204
 
  • B. Bolzon, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.S. Aryshev
    KEK, Ibaraki, Japan
  • B. Bolzon, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
  • B. Bolzon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • P. Karataev, K.O. Kruchinin
    Royal Holloway, University of London, Surrey, United Kingdom
  • P. Karataev
    JAI, Egham, Surrey, United Kingdom
 
  Optical Transition Radiation (OTR) is emitted when a charged particle crosses the interface between two media with different dielectric properties. It has become a standard tool for beam imaging and transverse beam size measurements. At the KEK Accelerator Test Facility 2 (ATF2), OTR is used at the beginning of the final focus system to measure a micrometre beam size using the decrease in visibility of the OTR Point Spread Function (PSF). In order to study and improve the resolution of the optical system, a novel simulation tool has been developed in order to characterize the PSF in detail. Based on the physical optic propagation mode of ZEMAX, the propagation of the OTR electric field can be simulated very precisely up to the image plane, taking into account aberrations and diffraction coming through the designed optical system. This contribution will show the results of measurements performed after a first improvement of the ATF2 OTR optical design to confirm the very high resolution of the imaging system and the performance of this simulation tool.  
poster icon Poster MOPF04 [1.590 MB]  
 
MOPF09 A Gas-Jet Profile Monitor for the CLIC Drive Beam 224
 
  • A. Jeff, E.B. Holzer, T. Lefèvre
    CERN, Geneva, Switzerland
  • A. Jeff, V. Tzoganis, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • V. Tzoganis, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The Compact LInear Collider (CLIC) will use a novel acceleration scheme in which energy extracted from a very intense beam of relatively low-energy electrons (the Drive Beam) is used to accelerate a lower intensity Main Beam to very high energy. The high intensity of the Drive Beam, with pulses of more than 1015 electrons, poses a challenge for conventional profile measurements such as wire scanners. Thus, new non-invasive profile measurements are being investigated. Profile monitors using gas ionisation or fluorescence have been used at a number of accelerators. Typically, extra gas must be injected at the monitor and the rise in pressure spreads some distance down the beampipe. In contrast, a gas jet can be fired across the beam into a receiving chamber, with little gas escaping into the rest of the beam pipe. In addition, a gas jet shaped into a thin plane can be used like a screen on which the beam cross-section is imaged. In this paper we present some arrangements for the generation of such a jet. In addition to jet shaping using nozzles and skimmers, we propose a new scheme to use matter-wave interference with a Fresnel Zone Plate to bring an atomic jet to a narrow focus.  
 
MOPF10 Off-Axis Undulator Radiation for CLIC Drive Beam Diagnostics 228
 
  • A. Jeff, T. Lefèvre
    CERN, Geneva, Switzerland
  • A. Jeff, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A. Jeff, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  The Compact LInear Collider (CLIC) will use a novel acceleration scheme in which energy extracted from a very intense beam of relatively low-energy electrons (the Drive Beam) is used to accelerate a lower intensity Main Beam to very high energy. The high intensity of the Drive Beam, with pulses of more than 1015 electrons, poses a challenge for conventional profile measurements such as wire scanners. Thus, new non-invasive profile measurements are being investigated. In this paper we propose the use of relatively inexpensive permanent-magnet undulators to generate off-axis visible Synchrotron Radiation from the CLIC Drive Beam. The field strength and period length of the undulator should be designed such that the on-axis undulator wavelength is in the ultra-violet. A smaller but still useable amount of visible light is then generated in a hollow cone. This light can be reflected out of the beam pipe by a ring-shaped mirror placed downstream and imaged on a camera. In this contribution, results of SRW and ZEMAX simulations using the CLIC Drive Beam parameters are shown.  
 
TUPC19 First Beam Tests of a Prototype Cavity Beam Position Monitor for the CLIC Main Beam 411
 
  • F.J. Cullinan, S.T. Boogert, A. Lyapin, J.R. Towler
    JAI, Egham, Surrey, United Kingdom
  • W. Farabolini, T. Lefèvre, L. Søby, M. Wendt
    CERN, Geneva, Switzerland
 
  Beam position monitors (BPMs) throughout the CLIC (Compact Linear Collider) main linac and beam delivery system must routinely operate at 50 nm resolution and be able to make multiple position measurements within a single 156 ns long bunch train. A prototype cavity beam position monitor, designed to demonstrate this performance, has been tested on the probe beamline of CTF3 (the CLIC Test Facility). Sensitivity measurements of the dipole mode position cavity and of the monopole mode reference cavity have been made. The characteristics of signals from short and long bunch trains and the dominant systematic effects have also been studied.  
 
TUPC20 Technologies and R&D for a High Resolution Cavity BPM for the CLIC Main Beam 415
 
  • J.R. Towler, T. Lefèvre, L. Søby, M. Wendt
    CERN, Geneva, Switzerland
  • S.T. Boogert, F.J. Cullinan, A. Lyapin
    JAI, Egham, Surrey, United Kingdom
 
  The Main Beam (MB) LINAC of the Compact Linear Collider (CLIC) requires a beam orbit measurement system with a high spatial (50 nm) and high temporal (50 ns) resolution to resolve the beam position within the 156 ns long bunch train, traveling on an energy-chirped, minimum dispersive trajectory. A 15 GHz prototype cavity BPM has been commissioned in the probe beam-line of the CTF3 CLIC Test Facility. The performance and technical details of this prototype installation are discussed in this paper, including the 15 GHz analog down-converter, the data acquisition and the control electronics and software. An R&D outlook is given for the next steps, which requires a system of 3 cavity BPMs to investigate the full resolution potential.  
 
WEAL2 Extremely Low Emittance Beam Size Diagnostics with Sub-Micrometer Resolution Using Optical Transition Radiation 615
 
  • K.O. Kruchinin, S.T. Boogert, P. Karataev, L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • A.S. Aryshev, M.V. Shevelev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • B. Bolzon
    The University of Liverpool, Liverpool, United Kingdom
  • B. Bolzon, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
 
  Transverse electron beam diagnostics is crucial for stable and reliable operation of the future electron-positron linear colliders such as CLIC or Higgs Factory. The-state-of-the-art in transverse beam diagnostics is based on the laser-wire technology. However, it requires a high power laser significantly increases the cost of the laser-wire system. Therefore, a simpler and relatively inexpensive method is required. A beam profile monitor based on Optical Transition Radiation (OTR) is very promising. The resolution of conventional OTR monitor is defined by a root-mean-square of the so-called Point Spread Function (PSF). In optical wavelength range the resolution is diffraction limited down to a few micrometers. However, in * we demonstrated that the OTR PSF has a structure which visibility can be used to monitor vertical beam size with sub-micrometer resolution. In this report we shall represent the recent experimental results of a micron-scale beam size measurement. We shall describe the entire method including calibration procedure, new analysis, and calculation of uncertainties. We shall discuss the hardware status and future plans.
* P. Karataev et al., Physical Review Letters 107, 174801 (2011).
 
slides icon Slides WEAL2 [5.120 MB]  
 
WEAL3 Diffraction Radiation Test at CesrTA for Non-Intercepting Micron-Scale Beam Size Measurement 619
 
  • L.M. Bobb, E. Bravin, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
  • T. Aumeyr, P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • M.G. Billing, J.V. Conway
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • L.M. Bobb
    JAI, Egham, Surrey, United Kingdom
 
  Diffraction radiation (DR) is produced when a relativistic charged particle moves in the vicinity of a medium. The electric field of the charged particle polarizes the target atoms which then oscillate, emitting radiation with a very broad spectrum. The spatial-spectral properties of DR are sensitive to a range of electron beam parameters. Furthermore, the energy loss due to DR is so small that the electron beam parameters are unchanged. DR can therefore be used to develop non-invasive diagnostic tools. To achieve the micron-scale resolution required to measure the transverse (vertical) beam size using incoherent DR in CLIC, DR in UV and X-ray spectral-range must be investigated. Experimental validation of such a scheme is ongoing at CesrTA at Cornell University, USA. Here we report on the test using 0.5 mm and 1 mm target apertures on a 2.1 GeV electron beam and 400 nm wavelength.  
slides icon Slides WEAL3 [2.893 MB]  
 
WEPF18 Zemax Simulations of Diffraction and Transition Radiation 852
 
  • T. Aumeyr, P. Karataev
    JAI, Egham, Surrey, United Kingdom
  • M.G. Billing
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • L.M. Bobb, B. Bolzon, T. Lefèvre, S. Mazzoni
    CERN, Geneva, Switzerland
 
  Diffraction Radiation (DR) and Transition Radiation (TR) are produced when a relativistic charged particle moves in the vicinity of a medium or through a medium respectively. The target atoms are polarised by the electric field of the charged particle, which then oscillate thus emitting radiation with a very broad spectrum. The spatial-spectral properties of DR/TR are sensitive to various electron beam parameters. Several projects aim to measure the transverse (vertical) beam size using DR or TR. This paper reports on how numerical simulations using Zemax can be used to study such a system.  
poster icon Poster WEPF18 [0.573 MB]