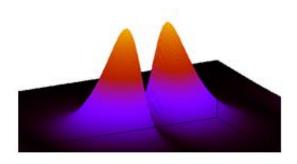
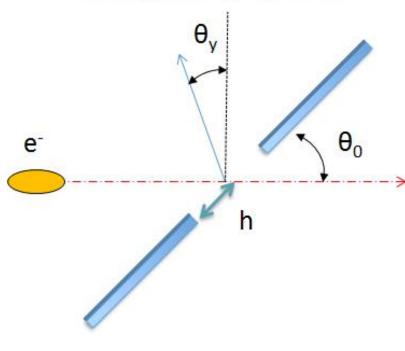

Diffraction Radiation Test at CesrTA for Non-Intercepting Micron-Scale Beam Size Measurement

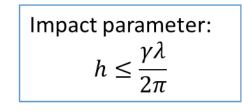
<u>L. Bobb^{1, 2}, T. Aumeyr¹, M. Billing³, E. Bravin², J. Conway³, P. Karataev¹, T. Lefevre², S. Mazzoni²</u>


- 1. John Adams Institute at Royal Holloway, Egham, Surrey, United Kingdom
- 2. CERN European Organisation for Nuclear Research, CERN, Geneva, Switzerland
- 3. Cornell University, Ithaca, New York, USA

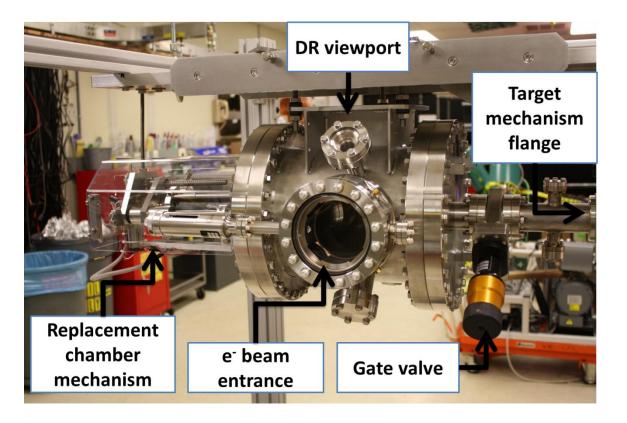

Contents

- Diffraction Radiation
- DR vacuum chamber + optical system
- Instruments at CesrTA
- Descriptions of targets used
- Identification of DR in images
- DR target imaging
- Synchrotron Radiation considerations
- Beam lifetime with target inserted
- Conclusion + outlook

Diffraction Radiation

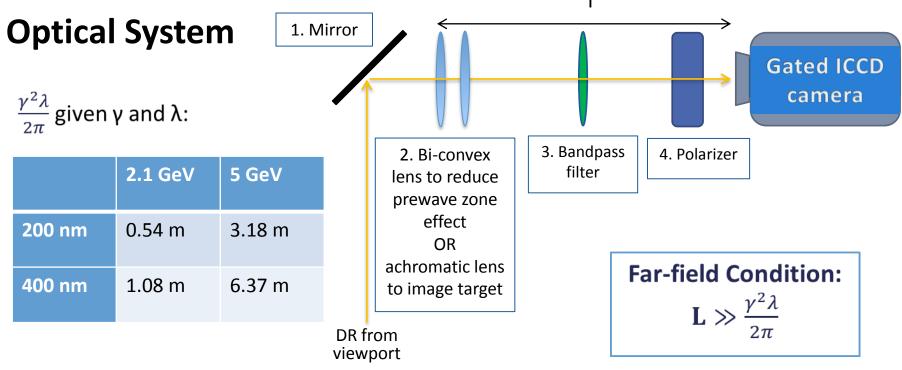


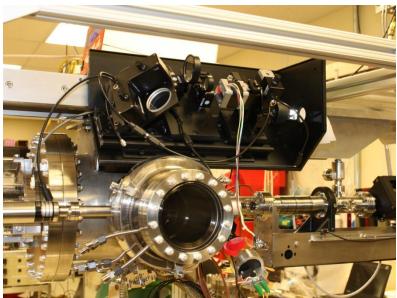
DR Angular distribution


Principle:

- Electron bunch moves through a high precision co-planar slit in a conducting screen (Si + Al coating).
- 2. Electric field of the electron bunch polarizes atoms of the screen surface.
- 3. DR is emitted in two directions:
 - along the particle trajectory "Forward" Diffraction Radiation" (FDR)
 - In the direction of specular reflection "Backward Diffraction Radiation" (BDR)

 θ_v = observation angle in vertical direction θ_0 = target tilt angle λ = wavelength 3 γ = Lorentz factor

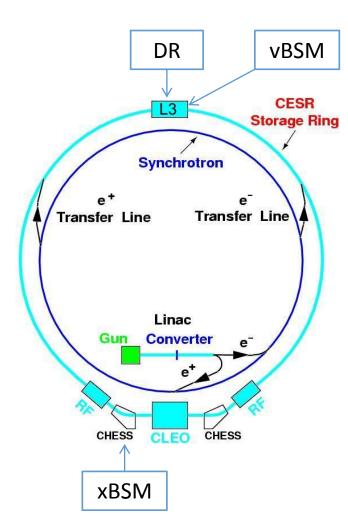

Vacuum chamber assembly



- LHS : CHESS operation
- RHS: DR experiment
- Optical system connected to DR viewport

- Gate valve to disconnect CESR vacuum for target changeover
- Target mechanism: rotation + translation IN/OUT

LHS = Left Hand Side RHS = Right Hand Side



- L = distance from source of DR to detector
- Compact optical system is in the prewave zone therefore a biconvex lens is used with detector in back focal plane to obtain the angular distribution.

(*Pre-wave zone effect in transition and diffraction radiation: Problems and Solutions -*P. V. Karataev).

Instruments at CesrTA

DR:

- Located in L3 straight section
- Target is inserted from the radial outside

vBSM (Visible Beam Size Monitor)

measures horizontal beam size σ_x
 (S. Wang et al., IPAC2013, MOPWA073, p.849.)

xBSM (X-ray Beam Size Monitor)

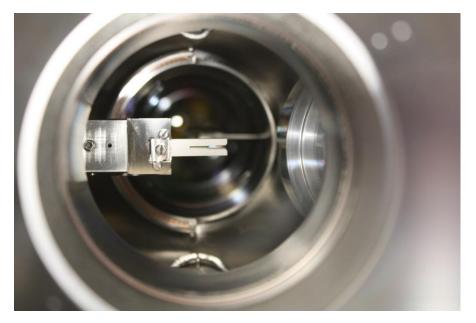
measures vertical beam size σ_y
 (N. Rider et al., IBIC2012, WECD01, p.585.)

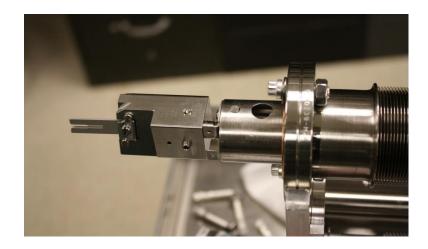
Beam lifetime + beam current monitor

Beam loss monitors downstream of DR target

http://www.cs.cornell.edu

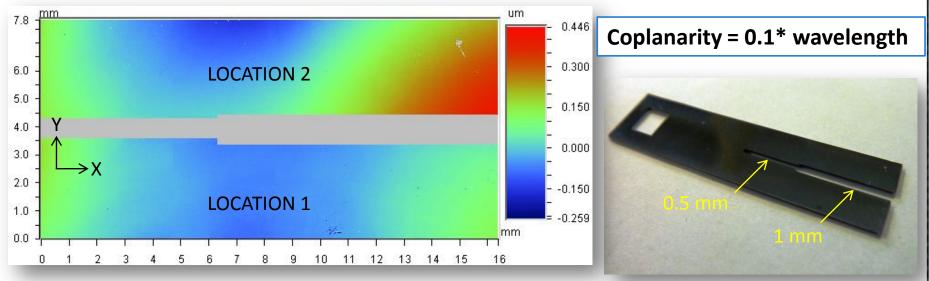
Target




Aperture sizes: 0.5 mm and 1 mm (etched)

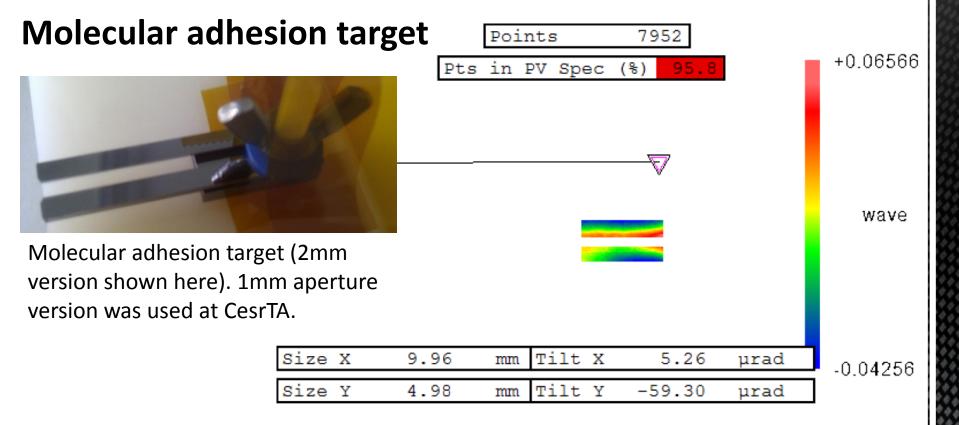
Material: Stainless steel (unpolished)

Thickness: 1 mm


Tilt angle wrt beam: 70 °

Technical drawings by N. Chritin Images by Y. Li

Chemically etched target


Specification	Location 1 (in µm or in µrad)	Location 2 (in µm or in µrad)
Maximum to minimum	0.64 μm	0.62 μm
Tilt in X direction	0 μrad	-17.6 µrad
Tilt in Y direction	0 µrad	37.9 μrad

Chemical etching:

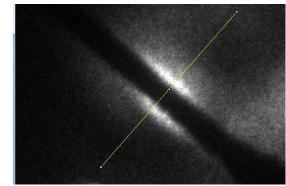
A process where silicon wafers are dipped into an etchant which is traditionally an acidic mixture.

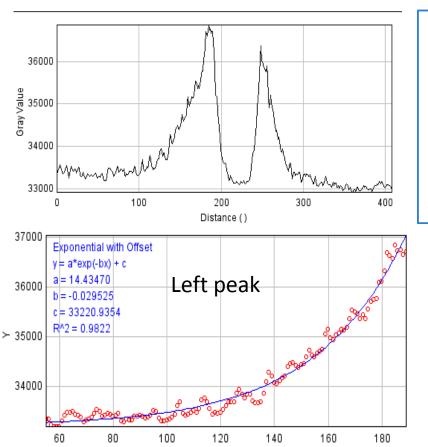
M.S. Kulkarni and H.F. Erk, Journal of The Electrochemical Soc., 147 (1) 176-188 (2000)

Metrology by L. Remandet

"Bonding by molecular adhesion (either 'direct wafer bonding' or 'fusion bonding') is a technique that enables two substrates having perfectly flat surfaces (e.g., polished mirror surfaces) to adhere to one another, without the application of adhesive (gum type, glue, etc.)."

Coplanarity measurement:

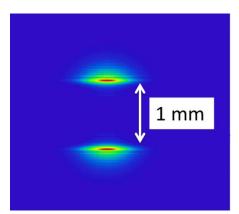

PV	68.479	nm
rms	13.909	nm


Metrology by Winlight Optics

Patent US 8158013 B2

Identification of DR in target imaging

- DR intensity decays exponentially from slit edge
- SR intensity uniform over small regions
- From simulations, max SR intensity (vert. pol.) does not occur at slit edge



Х

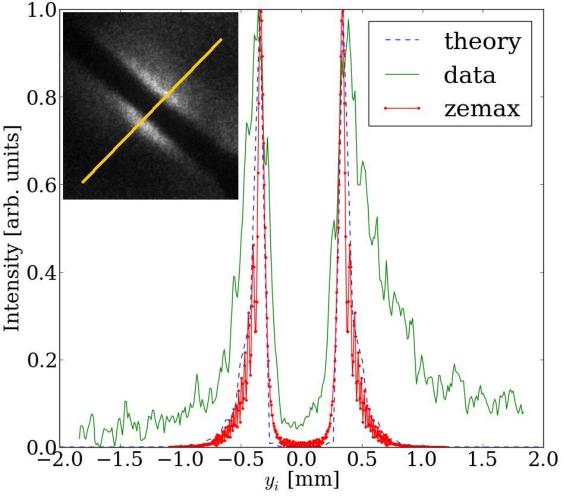
DR intensity [ph/e⁻]= k * SR intensity [ph/e⁻]

 $k \sim 50$ using real data from TR $k \sim 25$ using DR images

DR vert. pol. ~ 4.0×10^{-5} ph/e⁻ SR. vert. pol. ~ 6.3×10^{-7} ph/e⁻

T. Aumeyr et al., IBIC2013, WEPF18.

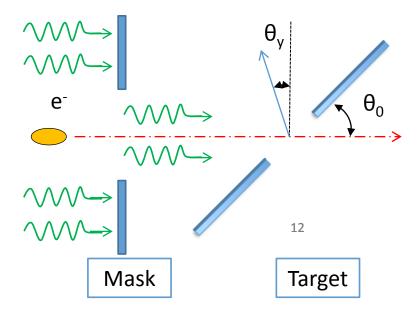
DR target imaging


- 2.1 GeV
- 1 mA single- bunch beam
- 400 nm DR observation wavelength

Theory-D. Xiang et al., Phys. Rev. ST Accel. Beams, 10 (2007) 062801.

Zemax-T. Aumeyr et al., IBIC2013, WEPF18.

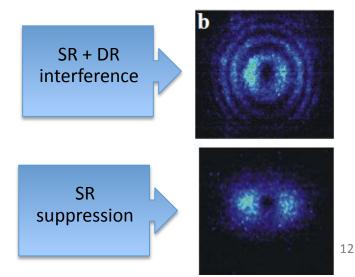
Data broadening possibly due to:


- data taken for $\sigma_y \sim 20 \ \mu m$ theoretical model and Zemax : single e⁻ $\sigma_y \rightarrow 0$
- Polariser misalignment → some horiz. pol. DR and synchrotron radiation (SR)
- 10 ± 2 nm bandwidth → data smearing (small)
- 15 ms exposure time (CesrTA rev. period $T = 2.56 \,\mu s$) \rightarrow smearing from beam jitter

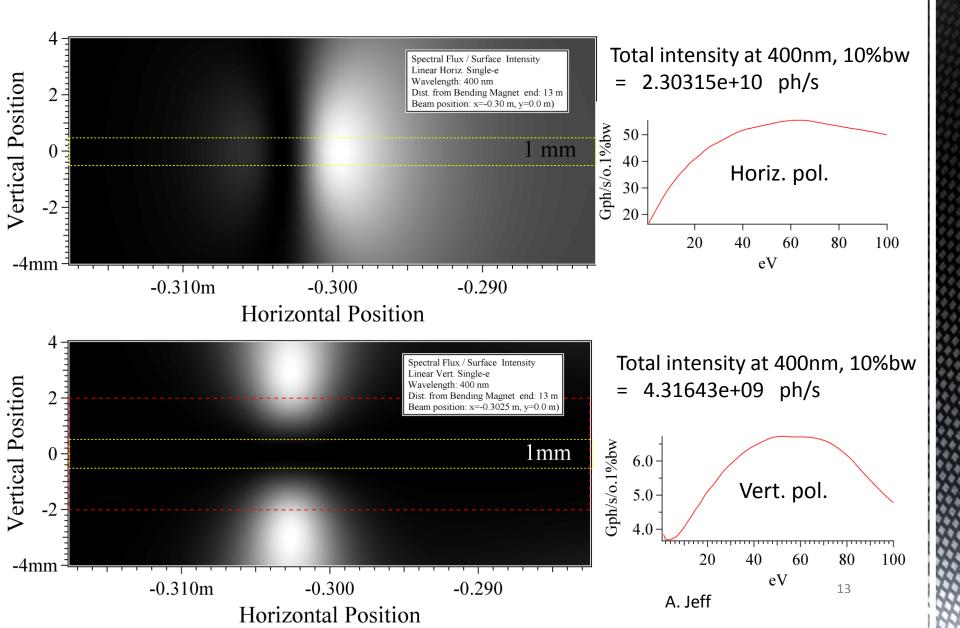
Synchrotron Radiation (SR)

Source of background	Contribution	
SR from beamline optics	High	
Camera noise	low	
Residual background	2011	

Use a mask upstream of target to suppress SR contribution.



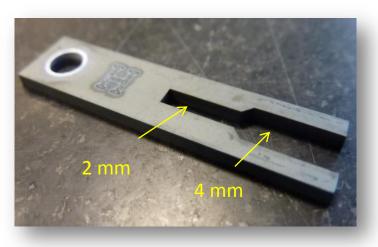
ODRI considerations:

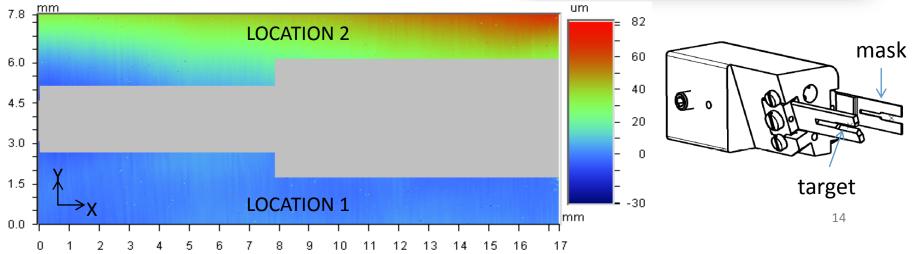

Aperture sizes	Interference
$a_{mask} = a_{target}$	Complete destructive interference of FDR + BDR
$a_{mask} \approx 2 \cdot a_{target}$	Measureable interference
$a_{mask} \ge 4 \cdot a_{target}$	Negligible interference

A. Cianchi et al. Phys. Rev. S. T., 14 102893 (2011)

P. Karataev et al., Proc. of EPAC 2004, THPLT067

SRW simulations



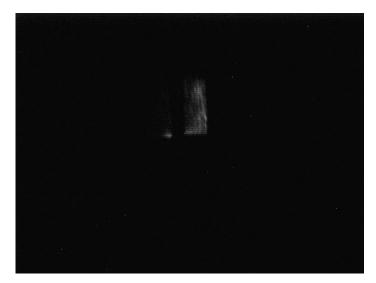

Mask

Technical drawings by N. Chritin, Metrology by L. Remandet

- Silicon Carbide
- Laser machining
- Not etched (orientated perpendicular to beam)
- Mask aperture = 4 * target aperture
 → avoid destructive interference (ODRI)

Specification	Location 1 (in µm or in µrad)	Location 2 (in μm or in μrad)
Maximum to minimum	≈ 10 µm	≈ 80 µm
Tilt in X direction	0 μrad	-1897 µrad
Tilt in Y direction	0 μrad	-13913 µrad

Beam lifetime


Beam lifetime with target inserted \approx 2-3 minutes

No change in beam lifetime :

- for 1 mA single-bunch or 1 mA 10-bunch beams
 →not determined by charge-per-bunch dependent process
- for $13 \le \sigma_y \le 52 \ \mu m$ at 50 μm lifetime could be regained through manual adjustment of vertical position

- roll of the beam
- aspect ratio ($\sigma_y : \sigma_x = 490 \ \mu m$) which for this test was 1:38.

Chemically etched target

Process code:

- Approx. 5-10 minutes from losing beam to retract target, do the injection and align beam manually.
- Reduced turn-around time to 2-3 minutes.

Conclusion

- Phase 1 hardware and instrumentation for DR experimental program have been installed and tested in CesrTA.
- A method of beam alignment in the target aperture has been established.
- The typical beam lifetime is 2-3 minutes with the target inserted.
- DR signals have been identified from SR background in target images.

Outlook

- Improvements were made to the optical system:
 - A plano-convex lens with 500 mm focal length will be used for improved angular resolution.
 - All optical components have 50 mm clear aperture to avoid clipping.
 - The whole system was also dismantled and realigned.
 - Turn-by-turn measurements using gating
- Preparations for DR angular distribution beam size measurements in winter 2013 are on-going.
- Testing different substrates for the target and ceramic target holders
- Comparison of simulations with experimental data –ODRI, suppression of SR
- Going to shorter wavelengths (≈230 nm) to improve beam size sensitivity

Acknowledgements

CERN: A. Apyan, E. Bravin, S. Burger, N. Chritin, A. Jeff, O.R. Jones, T. Lefevre, A. Nosych, S. Mazzoni, H. Schmickler, S. Vulliez

Cornell:

J. Barley, L Bartnik, M Billing, J. Conway, M. Forster, Y. Li, T. O'Connell, S. Peck, D. Rice, D. Rubin, N. Ryder, J. Sexton, J. Shanks, M. Stedinger, C. Strohman, S. Wang + all groups involved in the installation and operation

RHUL: T. Aumeyr, P. Karataev

WEAL3 Beam Profile 2 IBIC2013, L. Bobb, 18th September 2013

Thank you for your attention