Author: Zemella, J.
Paper Title Page
TUA04 First Simultaneous Operation of Two Sase Beamlines in FLASH 297
 
  • M. Scholz, B. Faatz, S. Schreiber, J. Zemella
    DESY, Hamburg, Germany
 
  FLASH2, the second undulator beamline of the FLASH FEL user facility at DESY (Hamburg, Germany) is under commissioning. Its first lasing was achieved in August 2014. FLASH is the first soft X-ray FEL operating two undulator beamlines simultaneously. Both undulator beamlines are driven by a common linear superconducting accelerator with a beam energy of up to 1.25 GeV. Fast kickers and a septum are installed to distribute one part of the electron bunch train to FLASH1 and the other part to FLASH2 with full repetition rate. The commissioning of FLASH2 takes place primarily in parallel to FLASH1 user operation. Various beam optics measurements has been carried out in order to ensure the required electron beam quality for efficient SASE generation. This paper reports the status of the FLASH2 commissioning.  
slides icon Slides TUA04 [9.655 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP030 Time Dependent Study for an X-ray FEL Oscillator at LCLS-II 433
 
  • J. Zemella
    DESY, Hamburg, Germany
  • W.M. Fawley, T.J. Maxwell
    SLAC, Menlo Park, California, USA
  • R.R. Lindberg
    ANL, Argonne, Illinois, USA
 
  The LCLS-II with its high repetition rate and high quality beam will be capable of driving an X-ray free electron laser oscillator at higher harmonics in the hard X-ray regime (0.1 nm). The oscillator consists of a low loss X-ray crystal cavity using diamond Bragg crystals with meV bandwidth. The expected average spectral flux has been estimated to be at least two orders of magnitude greater than present synchrotron-based sources with highly stable, coherent pulses of duration 1 ps or less for applications in Mössbauer spectroscopy and inelastic x-ray scattering. A more detailed study of the start up of a fifth-harmonic X-ray FEL oscillator at LCLS-II will be presented with full, time-dependent simulations.  
poster icon Poster TUP030 [0.619 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP032 Numerical Studies of the Influence of the Electron Bunch Arrival Time Jitter on the Gain Process of an XFEL-Oscillator for the European XFEL 436
 
  • C.P. Maag, J. Zemella
    DESY, Hamburg, Germany
  • J. Roßbach
    Uni HH, Hamburg, Germany
 
  The superconducting linac of the European XFEL Laboratory in Hamburg will produce electron bunch trains with a time structure that allow in principle the operation of an XFELO (X-ray FEL-Oscillator). The electron bunches of the European XFEL have an expected length between 2 and 180 fs (FWHM) with an expected arrival time jitter of about 30 fs (RMS). A jitter of the electron bunch arrival time leads to a detuning between the electron and photon pulse. Since an XFEL-Oscillator relies on a spatial overlap of electron and photon pulse, the influence of a lack of longitudinal overlap is studied. The simulations are performed for different bunch lengths and levels of arrival time jitter. The results of a simulation are presented where angular, transversal and arrival time jitter are taken into account simultaneously, assuming parameters expected for the European XFEL Linac.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)