

Time Dependent Study for an X-ray FEL Oscillator at LCLS-II.

J. Zemella^{+*}, W. M. Fawley^{*}, R. R. Lindberg[†], T. J. Maxwell^{*} ⁺**DESY**, Hamburg, Germany *SLAC, Menlo Park CA, USA [†]ANL, Argonne IL, USA

Summary

Gain study

- Time dependent study of X-ray free electron laser oscillator (XFELO) driven by super-conducting LCLS-II linac with 4 GeV beam energy.
- Amplifying fifth harmonics of FEL radiation to reach hard X-ray wavelength.
- High reflectivity crystal cavity using Diamond Bragg reflection assumed.
- Orders of magnitude larger spectral flux at 14.4 keV

single-pass steady state gain

intra cavity pulse energy vs cavity pass number

			time (ps)	photon energy - E _{Bragg} (meV)	
			red: temporal profile of photon pulse blue: normalized current profile	red: spectral profile of photon pulse; $E_{\sf Bragg}$: Bragg photon energy blue: combined (thick and thin) crystal reflectivity	
Photon pulse parameter out-coupled			Cavity design	\leftarrow L_c	
Parameter Out-couple ratio Pulse energy at saturation Photons per pulse Spectral flux (2 MHz rep-rate) Pulse length at saturation (rms) Pulse bandwidth at situation Pass number to saturation Gain per cavity pass	Value 4.0 0.26 1.1.10 ⁸ 4.0.10 ¹³ 205.0 5.0 250 7.6	Units % µJ ph/s/meV fs meV	 For simulation a simplified cavity design is used. Cavity build up out of two focusing mirrors and a filter. Filter applied by an external table containing the wavelength dependent complex reflectivity of the Bragg crystals. To be comparable to the more advanced tunable cavity design only Rayleigh length has to be the same. 	Focusing mirror f Trapped radiation	

