Author: Lee, S.B.
Paper Title Page
MOP016 Status of the Fabrication of PAL-XFEL Magnet Power Supplies 66
 
  • S.-H. Jeong, Y.-G. Jung, H.-S. Kang, D.E. Kim, I.S. Ko, H.-G. Lee, S.B. Lee, B.G. Oh, K.-H. Park, H.S. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  PAL-XFEL has been constructing including a 10 GeV linac, hard X-ray and soft X-ray branches. PAL-XFEL required for about six hundreds of magnet power supply (MPS). The eight different prototypes of MPS are developing to confirm the performance, functions, size, heat load and so on. This paper describes the test results of the prototype MPS in major specifications. All MPSs have to be installed the end of September in 2015. The installation progress of the MPS was also described.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP048 The Design of Low Noise Magnet Power Supply 136
 
  • K.-H. Park, S.-H. Jeong, Y.-G. Jung, D.E. Kim, H.-G. Lee, S.B. Lee, B.G. Oh, H.S. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
  • W.S. Choi, I.S. Ko
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  The accelerator needs a high stable magnet power supply(MPS) with low noise output. The stability requirements of the some MPSs in accelerator were in the range of the ~10 ppm. There are many noise sources which affect the stability of MPS. Thus the design of the MPS requests much attention on the noise reduction scheme from the beginning stage. The noise on the MPS divided into some sources such as the ripple voltage coming from rectifier for the DC link, switching noise at the FET or IGBT on the high voltage, noise coming digital logics around DSP and its peripheral circuits, ground matters on the analogue signal process and so on. This paper analyzed the noise sources and described the way how to build the low noise power supply.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP049 Design, Development and Test of the Magnets for PAL-XFEL 139
 
  • H.S. Suh, M.-H. Cho, S.-H. Jeong, Y.-G. Jung, H.-S. Kang, D.E. Kim, I.S. Ko, H.-G. Lee, S.B. Lee, B.G. Oh, K.-H. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  PAL-XFEL is now being constructed with the goal of 0.1 nm hard X-ray in Pohang, Korea. As the first phase we will construct 10 GeV linac, one hard X-ray and one soft X-ray beamlines which require 6 different families of 55 dipole magnets, 11 families of 209 quadrupole magnets, and 3 families of 48 corrector magnets. We have designed these magnets with considering the efficient production and the proper power supplies. This paper describes an outline of the design and test results of the magnets until now.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP055 Technical Overview of Bunch Compressor System for PAL XFEL 490
 
  • H.-G. Lee, Y.-G. Jung, H.-S. Kang, D.E. Kim, K.W. Kim, S.B. Lee, D.H. Na, B.G. Oh, K.-H. Park, H.S. Suh, Y.J. Suh
    PAL, Pohang, Republic of Korea
 
  Pohang Accelerator Laboratory(PAL) is developing a SASE X-ray Free Electron Laser based on 10 GeV linear accelerator. Bunch compressor (BC) systems are developed to be used for the linear accelerator tunnel. It consists of three(BC1, BC2, BC3H) hard X-ray line and one(BC3S) soft X-ray line. BC systems are composed of four dipole magnets, three quadrupole magnet, BPM and collimator. The support system is based on an asymmetric four-dipole magnet chicane in which asymmetry and variable R56. can be optimized. This flexibility is achieved by allowing the middle two dipole magnets to move transversely. In this paper, we describe the design of the stages used for precise movement of the bunch compressor magnets and associated diagnostics components.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WED04 Status Report of PAL-XFEL Undulator Program 769
 
  • D.E. Kim, M.-H. Cho, Y.-G. Jung, H.-S. Kang, I.S. Ko, H.-G. Lee, S.B. Lee, W.W. Lee, B.G. Oh, K.-H. Park, H.S. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
  • S. Karabekyan, J. Pflüger
    XFEL. EU, Hamburg, Germany
 
  PAL-XFEL is a SASE based FEL using S-band linear accelerator, photo cathode RF Gun, and hybrid undulator system for final lazing. The undulator system is based on EU-XFEL undulator design with necessary modifications. The changes include new magnetic geometry reflecting changed magnetic requirements, and EPICs based control system. The undulator system is in measurement and tuning stage targeting to finish installation within 2015. In this report, the development, tuning, measurement efforts for PAL-XFEL undulator system will be reported.  
slides icon Slides WED04 [3.317 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)