Author: Stupakov, G.V.
Paper Title Page
MOPSO73 Suface Roughness Wakefield in FEL Undulator 127
 
  • G.V. Stupakov
    SLAC, Menlo Park, California, USA
  • S. Reiche
    PSI, Villigen PSI, Switzerland
 
  Among several wakefield models for the FEL undulator vacuum chamber a simple sinusoidal wall modulation with a small ratio of height to wavelength is especially attractive because of its simplicity [1]. The model neglects a so called resonant mode wakefield and has an (integrable) singularity at the origin which makes difficult its use in practical simulations. In this work we generalize the longitudinal wake of a sinusoidally modulated wall to include the effect of the resonant mode. This also removes the singularity of the wake at the origin. The new wake is used to evaluate the roughness wakefield effect in the undulator of SwissFEL.
[1] G. Stupakov, in "Nonlinear and Collective Phenomena in Beam Physics 1998" Workshop, New York (1999), no. 468 in AIP Conference Proceedings, pp. 334–47.
 
 
MOPSO74 Reevaluation of Coherent Electron Cooling Gain Factor 132
 
  • G.V. Stupakov
    SLAC, Menlo Park, California, USA
  • M.S. Zolotorev
    LBNL, Berkeley, California, USA
 
  In Ref. [1] the authors put forward a concept of coherent electron cooling of hadrons. At the core of the concept lies the following idea: a density perturbation induced by an hadron in a co-propagating relativistic electron beam is amplified by several orders of magnitude in a free electron laser (FEL). After the FEL the electron beam is merged again with the hadron one and the amplified electric field in the electron beam acts back on each hadron resulting, after many repetitions, in cooling of the hadron beam. The efficiency of the process is critically determined by the amplification factor of the longitudinal electric field induced by the hadron in the electron beam. In this work we show that this factor is actually considerably smaller than the (conventionally defined) FEL gain with the smallness parameter to be the relative bandwidth of the FEL amplifier.
[1] V. N. Litvinenko and Y. S. Derbenev, Phys. Rev. Lett. 102, 114801 (2009).
 
 
TUOCNO05 Design Concepts for a Next Generation Light Source at LBNL 193
 
  • J.N. Corlett, A.P. Allezy, D. Arbelaez, K.M. Baptiste, J.M. Byrd, C.S. Daniels, S. De Santis, W.W. Delp, P. Denes, R.J. Donahue, L.R. Doolittle, P. Emma, D. Filippetto, J.G. Floyd, J.P. Harkins, G. Huang, J.-Y. Jung, D. Li, T.P. Lou, T.H. Luo, G. Marcus, M.T. Monroy, H. Nishimura, H.A. Padmore, C. F. Papadopoulos, G.C. Pappas, S. Paret, G. Penn, M. Placidi, S. Prestemon, D. Prosnitz, H.J. Qian, J. Qiang, A. Ratti, M.W. Reinsch, D. Robin, F. Sannibale, R.W. Schoenlein, C. Serrano, J.W. Staples, C. Steier, C. Sun, M. Venturini, W.L. Waldron, W. Wan, T. Warwick, R.P. Wells, R.B. Wilcox, S. Zimmermann, M.S. Zolotorev
    LBNL, Berkeley, California, USA
  • C. Adolphsen, K.L.F. Bane, Y. Ding, Z. Huang, C.D. Nantista, C.-K. Ng, H.-D. Nuhn, C.H. Rivetta, G.V. Stupakov
    SLAC, Menlo Park, California, USA
  • D. Arenius, G. Neil, T. Powers, J.P. Preble
    JLAB, Newport News, Virginia, USA
  • C.M. Ginsburg, R.D. Kephart, A.L. Klebaner, T.J. Peterson, A.I. Sukhanov
    Fermilab, Batavia, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The NGLS collaboration is developing design concepts for a multi-beamline soft x-ray FEL array powered by a superconducting linear accelerator, operating with a high bunch repetition rate of approximately 1 MHz. The CW superconducting linear accelerator design is based on developments of TESLA and ILC technology, and is supplied by an injector based on a high-brightness, high-repetition-rate photocathode electron gun. Electron bunches from the linac are distributed by RF deflecting cavities to the array of independently configurable FEL beamlines with nominal bunch rates of ~100 kHz in each FEL, with uniform pulse spacing, and some FELs capable of operating at the full linac bunch rate. Individual FELs may be configured for different modes of operation, including self-seeded and external-laser-seeded, and each may produce high peak and average brightness x-rays with a flexible pulse format, and with pulse durations ranging from femtoseconds and shorter, to hundreds of femtoseconds. In this paper we describe current design concepts, and progress in R&D activities.
 
slides icon Slides TUOCNO05 [5.982 MB]  
 
WEPSO68 Effect of Coulomb Collisions on Echo-enabled Harmonic Generation 684
 
  • G.V. Stupakov
    SLAC, Menlo Park, California, USA
 
  Echo Enabled Harmonic Generation (EEHG) for FEL seeding is sensitive to the intrabeam scattering (IBS) effect. The reason for this is that in the process of generation high-harmonic density modulation in the beam the phase space evolves through a stage with narrow energy bands, which are characterized by the energy spread many times smaller than the beam energy spread. Energy diffusion caused by IBS tends to smear our these bands leading to diminished bunching factors at high harmonics. In the previous work [1] IBS in EEHG was studied in a simple model of a drift. This work extends the analysis of [1] to realistic lattices, and is applied to some of the existing practical designs of EEHG seeding.
[1] G. Stupakov, Effect of Coulomb Collisions on Echo-Enabled Harmonic Generation (EEHG), in Proceedings of the 2011 FEL Conference, Shanghai, China, 2011.