
EFFECT OF COULOMB COLLISIONS ON ECHO-ENABLED

HARMONIC GENERATION∗

G. Stupakov

SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

Abstract

We develop a practical computational technique for eval-

uation of the effect of intra-beam scattering on Echo-

Enabled Harmonic Generation (EEHG). The techniques is

applied for calculation of the EEHG seeding for NGLS soft

x-ray FEL project being developed at LBNL.

INTRODUCTION

Echo-Enabled Harmonic Generation [1,2] (EEHG) has a

remarkable up-frequency conversion efficiency and allows

for generation of high harmonics with a relatively small

energy modulation. While increasing harmonic number to

∼ 102 in EEHG sets stringent requirements on the seeding

system, they can, in principle, be satisfied with increased

tolerances on the magnetic field and the quality of the laser

beams used for modulation of the beam energy. It was re-

cently realized [3] however that the ultimate limit on har-

monic number in EEHG is likely imposed by Coulomb col-

lisions between the particles of the beam (aka intra-beam

scattering). This is due to the fact that in the process of

EEHG the phase space of the beam is split into stripes

that have effective energy spread of the order of the en-

ergy spread of the beam divided by the harmonic number,

that is much smaller than the beam energy spread. As is

well known, the dominant process in Coulomb collisions

is a small-angle scattering, which predominantly leads to

diffusion in the momentum space. This diffusion smears

out the stripes and eventually lead to decreasing of the final

bunching factor at the desired harmonic.

The analysis in [3] was limited by an unrealistic assump-

tion that collisions occur in a beam with a constant trans-

verse size and angular spread. In this paper we will get

rid of this constraint and consider intra-beam scattering in

a lattice where the transverse size of the beam and its an-

gular spread vary along the beam path. Account of these

effects leads to the energy diffusion in the beam varying

with distance. A convenient technique for treating such

a diffusion was developed in recent papers by Yampolsky

and Carlsten [4, 5] and is based on Fourier transforma-

tion of the beam distribution function in six dimensional

phase space and a subsequent solution of the Fourier trans-

formed Vlasov equation. In this paper we briefly outline

their technique before applying it to the particular example

of EEHG. The technique is applicable for linear beam dy-

namics when collective effects (wakefields) are neglected.

∗Work supported by the U.S. Department of Energy under contract No.

DE-AC02-76SF00515.

In a recent report [6] G. Penn developed an alternative

approach to the IBS in EEHG and carried out computer

simulations for several layouts of EEHG seeding for the

NGLS soft x-ray FEL project at LBNL [7].

COULOMB COLLISIONS IN EEHG

A simplified collision term which can be used in EEHG

was derived in [3]. It appears on the right-hand side of the

Vlasov equation for the distribution function f , and can be

written in the following form

df

ds
=

1

2
D(s)

∂2f

∂∆E2
, (1)

where the full derivative df/ds in (1) is taken along parti-

cles’ trajectories, s is the path length and ∆E is the energy

measured from the nominal energy of the beam. The diffu-

sion coefficient D is

D(s) =
π1/2Λ

2γ
√

σθx(s)σθy(s)

(mec
2)2re

σx(s)σy(s)

I

IA
, (2)

with I the beam current, IA = mc3/e ≈ 17 kA the Alfven

current and re the classical electron radius. The diffusion

coefficient is averaged over the transverse distribution of

the beam, which is assumed to be a round Gaussian with the

rms transverse sizes σx and σy and the rms angular spreads

σθx and σθy in x and y directions, respectively.

In Eq. (2) we specifically indicate that the beam dimen-

sions and divergences vary with s due to the variation of

the lattice functions. Analysis of Ref. [3] neglected this

variation and assumed D constant.

EVOLUTION OF THE DISTRIBUTION

FUNCTION IN FOURIER SPACE

The distribution function of the beam f in the six-

dimensional phase space, f(x, θx, y, θy, z,∆E, s), satis-

fies the Vlasov equation (we define f as a probability in

the phase space, so that its integration over the first 6 vari-

ables gives unity). The arguments of f are the transverse

coordinates x and y, the transverse angles θx and θy , the

longitudinal coordinate inside the beam z, and the energy

deviation from the nominal energy ∆E. If there is no inter-

action between the particles, so that one actually deals with

one-particle dynamics, a solution of the Vlasov equation

can be obtained with the help of an R-matrix.

Let X = (x, θx, y, θy, z,∆E)T be a column vector;

if the 6×6 matrix R(s) that transforms this vector from

s = 0 to s is known, then X(s) = R(s)X(0). With the
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help of R the distribution function f(X, s) at location s is

easily expressed through the initial distribution at s = 0,

f0(X) = f(X, 0), as

f(X, s) = f0(R(s)−1
X). (3)

If we now make a 6-dimensional Fourier transformation

f → f̂ ,

f̂(kx, kθx, ky, kθy, kz, k∆E , s) =

∫

dxdθxdydθydzd∆E

× ei(xkx+θxkθx+yky+θykθy+zkz+∆Ek∆E)f,

then as is shown in [4, 5] f̂ also satisfies a (trans-

formed) Vlasov equation whose solution can be found

similar to (3). Let K denote the column vector K =
(kx, kθx, ky, kθy, kz, k∆E)

T , then the Fourier transformed

distribution function f̂(K, s) at s is expressed through

the initial f̂0(K) = f̂(K, 0) via the transposed matrix

RT [4, 5] ,

f̂(K, s) = f̂0(R(s)TK). (4)

Let us now consider the 6 numbers (kx, kθx, ky, kθy,
kz, k∆E) as a point in a 6-dimensional Fourier phase space.

When the beam is moving through a lattice, each such

phase point is moving in the Fourier phase space accord-

ing to

K(s) =
(

R(s)T
)−1

K(0), (5)

and carries the value of f̂ with it. In analogy with real parti-

cles characterized by vectors X it makes sense to associate

with the vector K a quasi-particle which is characterized

by the six wavenumbers along the six axes of the Fourier

space1.

Note that the quantity

b(kz, s) = f̂(0, 0, 0, 0, kz, 0, s)

=

∫

dxdθxdydθydzd∆Eeizkzf (6)

is the Fourier transform of the longitudinal density of the

bunch. It is equal to the often defined bunching factor

N−1
∑N

j=1 e
ikzzj , where zj is the z-coordinate of particle

j and N is the number of particles in the beam. If a beam is

sent through a radiator, the intensity of coherent radiation

at frequency ω = ckz will be proportional to |Qb(kz)|2,

where Q is the bunch charge.

DIFFUSION IN THE VLASOV EQUATION

With account of the energy diffusion (1) function f̂ sat-

isfies the Fourier transformed Vlasov equation

df̂

ds
= −1

2
Dk2∆E f̂ . (7)

1In analogy with quasi-particles in different branches of physics (e.g.,

phonons, plasmons, magnons, etc.) we can call these quasi-particles bun-

chions, to reflect the fact they characterize bunching of real particles in

the phase space at difference wavelength.

Comparing it with (1) we see that the right hand side is

not a differential operator any more. This equation can be

easily integrated,

f̂(K, s) = exp

[

−1

2

∫ s

0

D(s′)k∆E(s
′)2ds′

]

× f̂0(R(s)TK), (8)

where k∆E(s) is the k∆E coordinate of the quasi-particle

from initial to final state (it is given by the sixth element of

the vector K(s) in (5)).

FOURIER ANALYSIS OF EEHG

We will now illustrate the general technique outlined in

the previous sections by applying it to EEHG seeding [1,

2]. In this case we deal with the longitudinal dynamics

only, and limit our consideration to two variables z and p =
∆E/σE with σE the rms energy spread of the beam.

While analysis of the previous sections takes into ac-

count the finite length of the bunch, here we will consider

the case of infinitely long bunch with a flat profile, assum-

ing the initial distribution function of the form

f0(p, z) =
1√
2πL

e−p2/2, (9)

for −L/2 < z < L/2 and f0 = 0 outside of this interval.

Then, in the limit L → ∞,

f̂0(kp, kz) =

∫ L/2

−L/2

dz

∫

∞

−∞

dpf0(p, z)e
ikpp+ikzz

→ 2πL−1e−k2

p/2δ(kz), (10)

where we now use the variable kp = k∆EσE associated

with p instead of k∆E .

We now consider an energy modulation in the first un-

dulator. It changes particle’s energy from p to p′, p′ =
p + A1 sin(k1z), where A = ∆E1/σE with ∆E1 the en-

ergy modulation amplitude and ck1 is the frequency of the

first laser beam. This transforms the distribution function

from f0 to f1, f1(p, z) = f0(p−A1 sin(k1z), z). In Fourier

space we have

f̂1(kp, kz) =

∫

dzdpf0(p−A1 sin(k1z), z)e
ikpp+ikzz.

Changing the integration variable from p to p −
A1 sin(k1z) and using the expansion eikpA1 sin(k1z) =
∑

∞

m=−∞
e−imk1zJ−m (A1kp) , we obtain

f̂1(kp, kz) =
2π

L

∞
∑

m=−∞

J−m (A1kp) e
−k2

p/2δ(kz −mk1).

(11)

We see that as the result of the energy modulation each

Fourier quasi-particle (kz, kp) decays (with the relative am-

plitudes given by J−m (A1kp)) into infinitely many new

particles with (kz + k1m, kp), m = 0,±1,±2, . . ., shifted
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horizontally in the Fourier phase space. Strictly speak-

ing, the energy modulation in an undulator is a nonlin-

ear process and is not described by the formalism of R-

matrix. However, given that the component kp (and hence

k∆E) in the decay does not change, we still can use (8)

multiplying the decay amplitude J−m (A1kp) by the factor

exp
(

− 1
2LuDk2∆E

)

, where Lu is the length of the undula-

tor and D is the diffusion coefficient in it (assumed constant

through the undulator).

The chicane after the first modulator with the R
(1)
56 dis-

persion strength shifts the particles along z, z′ = z + C1p,

where C1 = R
(1)
56 σE/E0, and transforms f1(p, z) into

f1(p, z − C1p). The Fourier transform of the distribution

function after the chicane is

f̂2(kp, kz) =

∫

dzdpf1(p, z − C1p)e
ikpp+ikzz

= f̂1(kp + kzC1, kz). (12)

The calculations outlined above can be repeated for the

second stage of EEHG and combined together give the final

distribution function f̂4 in the Fourier phase space:

f̂4(kp,kz) =
2π

L

∞
∑

l,m=−∞

J−l (A2[kp + (lk2 +mk1)C2])

× J−m (A1[(kp + (lk2 +mk1)C2) + C1mk1])

× e−([kp+(lk2+mk1)C2]+C1mk1)
2/2

× δ(kz − lk2 −mk1), (13)

where A2 = ∆E2/σE with ∆E2 the amplitude of the en-

ergy modulation in the second undulator, ck2 is the fre-

quency of the second laser beam and C2 = R
(2)
56 σE/E0

where R
(2)
56 is the dispersion strength of the second mod-

ulator. If we now set kp = 0 in this equation (see

Eq. (6)), find the coefficients in front of the delta functions

δ(kz − lk2 −mk1) and multiply them by (2π)−1L, we ob-

tain the bunching factors bl,m for various EEHG harmonics

as defined in [2].

PHASE SPACE ILLUSTRATIONS

The analysis of the previous section is illustrated in

Fig. 1 by Fourier phase space pictures for the evolution

of the distribution function f̂ . In a particular example of

this section we choose the EEHG parameters to generate

the harmonic h = 200 of the laser frequency (we assume

k1 = k2 ≡ kL). While equations of the previous section

assume L → ∞ and hence f̂0 ∝ δ(kz) for illustration pur-

poses we consider the bunch of finite length (to have it well

resolved in density plots we actually take an unrealistically

short bunch, σz ≈ 3λL). In these illustrations we neglect

the diffusion effect (8).

The initial distribution function is shown on the first pic-

ture of Fig. 1—it is a two-dimensional Gaussian localized

at the origin kp ≈ kz ≈ 0. The second figure shows the

Fourier phase space after the first undulator where the ini-

tial function is split in the horizontal direction according

Figure 1: Sequence of phase plots of the absolute value of

|f̂ | through the EEHG system. The horizontal coordinate

is kz/kL and the vertical one is kp.

to Eq. (11). The third figure shows a small part of the

phase space after the first chicane; note that the chicane has

shifted the dense (red) areas in the phase space vertically

to kp ≈ 30. The fourth picture shows the previous area

moved after the second undulator-modulator to the desired

harmonic h = 200. However, it still has the same kp ≈ 30,

and hence does not contribute to the density modulation of

the beam. The final, fifth, picture shows the relevant phase

area after the second chicane: it is now shifted in verti-

cal direction on the horizontal axis kp = 0. According to

Eq. (6) this area is now responsible for the bunching factor

with h = 200.

PRACTICAL EXAMPLE OF EEHG FOR

NGLS

As a practical example we calculate the effect of IBS

using EEHG lattice for NGLS [7] using parameters of the
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seeding scheme provided to the author by G. Penn. The

relevant parameters of the beam and the laser are listed in

Table 1. The seeding scheme is aimed at generation of 1 nm

Table 1: Representative Set of NGLS Parameters

Electron beam energy 2.4 GeV

Bunch peak current 600 A

Normalized emittance 0.6µm

Energy spread, σE 150 keV

Laser wavelength 200 nm

First/second energy modulation 0.5/1 MeV

Seed wavelength 1 nm

seed wavelength using the laser wavelength λL = 200 nm,

that is generation of harmonic 200 of the laser radiation. It

uses two undulator modulators each 2 m long. The first en-

ergy modulation is 0.5 MeV, and the second energy mod-

ulation is 1 MeV. The first chicane has R
(1)
56 = 15.5 mm

and the second one has R(2) = 79 micron. Neglecting the

diffusion in the beam, for the optimized EEHG parameters,

the theory [2] predicts the bunching factor at harmonic 200

approximately equal to 5%, b200 ≈ 0.05. Plots of the beta

functions and the R56 function through the EEHG system

are shown in Figs. 2 and 3. Note that the variation of R56

0 2 4 6 8 10 12
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24

s(m)

Β
x
,Β

y
(m

)

Und 1 Chicane 1 Und 2 Chic 2

Βx

Βy

Figure 2: Plots of the horizontal and vertical beta functions

in the seeding area. The color dashed lines at the bottom

(here and at the next two figures) show locations of the two

undulators and two chicanes.

in the second chicane is too small to be visible in Fig. 3.

Taking the Coulomb logarith Λ = 8 and using the lat-

tice functions from Fig. 2 (and also the dispersion and its

derivative which we do not show) we calculated the diffu-

sion coefficients (2). The plot of D(s) is shown in Fig. 4

and the product k2∆ED that enters Eq. (8) is shown in

Fig. 5. Note that this product starts to grow from the mid-

dle of the first chicane where R56 increases and the phase

space of the beam develops thin energy stripes in the phase

space of the beam. Integration of this product through the

system gives the suppression factor

e−(1/2)
∫

s

0
D(s)k∆E(s)2ds = 0.47,

0 2 4 6 8 10 12

-5

0

5

10

15

s(m)

R
5
6

(m
m

)

Und 1 Chicane 1 Und 2 Ch. 2

Figure 3: Plot of R56(s) in EEHG seeding for NGLS.
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Figure 4: Diffusion coefficient as a function of s.
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Figure 5: Plot of the product k2∆ED.

and reduces its value from 5% to ≈ 2.5%.

DISCUSSION

In addition to IBS studied in this paper there is an-

other diffusion mechanism that adds to the intra-beam

scattering—quantum diffusion due to the incoherent syn-

chrotron radiation. This diffusion can be straightforwardly

added to (1) and included in the analysis of the seeding.

Given that the quantum diffusion scales as B3 with the

magnetic field B, an optimized design should try to lower
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the magnetic field in the second undulator where this diffu-

sion is likely to be dominant.
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