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Abstract
An important element in the concept of coherent electron

cooling [1] is amplification of the electric field induced by

a point charge in an electron beam passing through an FEL

amplifier. We calculate this factor in 1D FEL theory and

show that it is equal to the conventional FEL gain (for the

field) multiplied by the relative bandwidth of the FEL am-

plifier, which is typically a small parameter of the order of

10−3. The obtained amplification factor is more than two

orders smaller than quoted in Ref. [1]. We also discuss the

recent reply [2] of the authors of [1] to our comment [3]

and show that critical remarks in the reply with regard to

the comment are unjustified.

INTRODUCTION
In Ref. [1] the authors put forward a concept of coherent

electron cooling of hadrons. At the core of the concept lies

the following idea: a density perturbation induced by an

hadron in a co-propagating electron beam is amplified by

several orders of magnitude in a free electron laser (FEL).

After the FEL the electron beam is merged again with the

hadron one and the amplified electric field in the electron

beam acts back on each hadron resulting, after many repeti-

tions, in a cooling of the hadron beam. The efficiency of the

process is critically determined by the amplification factor

of the longitudinal electric field induced by the hadron in

the electron beam. The authors associate this amplifica-

tion with the FEL gain factor. In this note we show that

it is actually considerably smaller than the (conventionally

defined) FEL gain with the smallness parameter to be the

relative bandwidth σω/ω0 of the FEL amplifier.

This paper is an expanded and detailed version of the

comment [3] on the original publication [1].

AMPLIFICATION OF THE
LONGITUDINAL FIELD INDUCED BY

HADRON
In our analysis we use a standard one-dimensional linear

FEL theory which gives a reasonably good approximation

for typical parameters of modern FELs, (see, e.g., [4, 5]).

For simplicity we assume a helical undulator with the un-

dulator parameter K, the undulator period λu = 2π/ku
and length lu. An electron beam with a localized line den-

sity perturbation δn0(z) induced by an hadron (δn0 has
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dimension of inverse length, z is the longitudinal coordi-

nate inside the bunch in the direction of propagation) enters

the FEL. Following [5] we use the dimensionless undulator

length τ = kulu.

We expand δn0(z) into Fourier integral and use linear

FEL theory to propagate each harmonic from the beginning

to the end of the FEL assuming a high-gain FEL process.

The density at the exit δn0(z, τ) is Fourier transformed

over z

δnq(τ) =

∫ ∞

−∞
dze−ik0(1+q)zδn0(z, τ), (1)

where k0 = ω0/c = 2γ2ku/(1 + K2) corresponds to the

fundamental FEL frequency and q is the dimensionless de-

tuning. In a linear approximation, assuming a cold beam,

the FEL instability develops as δnq ∝ esτ with s satisfying

the dispersion equation

s2(s+ iq) = i(2ρ)3, (2)

with ρ the standard FEL parameter defined by

(2ρ)3 =
2λu

γk0S

K2

1 +K2

I

IA
, (3)

where γ is the beam Lorentz factor, S is the beam area, I is

the beam current and IA = mc3/e ≈ 17 kA is the Alfvén

current. The three roots of (2), s1, s2 and s3, for small

detuning q, can be approximated [5] by

si ≈ 2ρ

[
μi − i

3

q

2ρ
− 1

9μi

(
q

2ρ

)2
]
, i = 1, 2, 3, (4)

with μ1 =
√
3
2 + i

2 , μ2 = −
√
3
2 + i

2 and μ3 = −i. In what

follows we assume a large gain, then the terms involving

s2 and s3 can be neglected and only the fastest growing ex-

ponential term involving s1 is kept. The Fourier transform

δnq(τ) at the exit of the FEL in this limit can be expressed

through the initial value δnq(0) [5]

δnq(τ) = (s1 + iq)Hq(τ)δnq(0), (5)

where

Hq(τ) =
s1e

s1τ

(s1 − s2)(s1 − s3)
. (6)

Let us assume that δn0(z) corresponds to a localized per-

turbation at z = 0 that carries a charge Ze. If the width
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Δz of the perturbation is smaller than the reduced radiation

wavelength 1/k0 it can be approximated by a delta function

δ(z):

δn0(z) = Zδ(z), (7)

and δnq(0) = Z. Note that E0 = ±2πZe/S is the ini-

tial electric field in the vicinity of the perturbation (7) (at

distanced much smaller than
√
S/γ) in 1D model.

The density perturbation δn(z, τ) is given by the inverse

Fourier transformation

δn(z, τ) =
k0
2π

∫ ∞

−∞
dqeik0(1+q)zδnq(τ) (8)

=
1

2π
k0Zeik0z

∫ ∞

−∞
dqeik0zq(s1 + iq)Hq(τ).

In the expression for (s1 + iq)Hq(τ) we can neglect q in

comparison with s everywhere, except in the exponent of

es1τ , which with the help of (4) gives

s1Hq(τ) =
1

3
exp

(
2ρτ

[√
3

2
+

i

2
− i

3

q

2ρ

− 1

9

(√
3

2
− i

2

)(
q

2ρ

)2 ])
. (9)

We obtain

δn(z, τ) =
1

6π
k0Zeik0z+(

√
3+i)ρτ

∫ ∞

−∞
dqeik0zq

× exp

(
−τ

[
i

3
q +

1

9

(√
3− i

) q2

4ρ

])
. (10)

The integral in (10) is easily computed∫ ∞

−∞
dqeik0zq exp

(
−τ

[
i

3
q +

1

9

(√
3− i

) q2

4ρ

])

=

√
ρ

τ

6
√
π√

31/2 − i
exp

[
−ρ(τ − 3k0z)

2(√
3− i

)
τ

]
. (11)

We see that for a given τ (the undulator length) the absolute

value |δn(z, τ)| has a Gaussian distribution over z. The

maximal value of |δn(z, τ)| is achieved at the point where

the argument of the exponential function in (11) is equal

to zero, k0z = τ/3. Introducing the standard power gain

length Lg ,

L−1
g = 2

√
3ρku, (12)

we replace ρτ = lu/2
√
3Lg and obtain

max |δn(z, τ)| = 31/4√
π
k0Zρ

√
Lg

lu
elu/2Lg . (13)

The longitudinal electric field δE‖(z, τ) generated by

the density perturbation δn(z, τ) is found from the 1D

Poisson equation. This equation is trivially solved if one

remembers that δn(z, τ) has a fast oscillating factor eik0z

in it, hence

max |δE‖(z, τ)| = 4πe

k0S
max |δn(z, τ)|

=
4πZe

S

31/4√
π
ρ

√
Lg

lu
elu/2Lg . (14)

We can write the result (14) as the initial field E0 multiplied

by an amplification factor G, max |δE‖(z, τ)| = G|E0|,
where

G = 2
31/4√
π
ρ

√
Lg

lu
elu/2Lg . (15)

This factor G can be related to the (amplitude) FEL ampli-
fication factor GFEL. The latter is usually defined as a ratio

of the final (exit) amplitude of a sinusoidal density pertur-

bation at the resonant frequency (q = 0) to its initial value;

in our notation GFEL = |δnq(τ)/δnq(0)|q=0. Using (5)

we find

GFEL = |s1Hq(τ)|q=0 =
1

3
elu/2Lg . (16)

We see that the amplification factor G of the longitudinal

field (15) is much smaller than the FEL amplification factor

G = 2
35/4√
π
ρ

√
Lg

lu
GFEL, (17)

in contrast to the statement in [1] where it seems that G is

identified with GFEL. Note that Eq. (17) can also be written

as

G =
σω

ω0
GFEL, (18)

where the relative FEL bandwidth is defined as1

σω

ω0
= 2

35/4√
π
ρ

√
Lg

lu
. (19)

Eq. (18) shows that the smallness of G in comparison with

GFEL is due to the narrow amplification line of the FEL.

Given that the parameter ρ is a small quantity, of the order

of 10−3, the difference between GFEL and G can be as

large as two to three orders of magnitude.

NUMERICAL ESTIMATE
Note that, as discussed in [1], the maximally achiev-

able FEL gain is limited by FEL saturation. In saturation

the density modulation reaches the averaged density of the

beam, or, equivalently, the bunching factor becomes of the

order of one. The saturation length lsat can be estimated

from the linear FEL theory using an equation for the power

of the FEL radiation which starts from the shot noise [5]

(the SASE regime)

P (l) =
1

3
√
π
ρ2ω0γmc2

√
Lg

l
el/Lg . (20)

1This definition differs by a numerical factor from [5], however the

difference between the two definitions is less then 5%.
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It is known that in saturation the SASE FEL power is ap-

proximately equal to ργmc2I/e. Equating this quantity

to (20) we can express the ratio lsat/Lg through other FEL

parameters:

√
Lg

lsat
el

sat/Lg =
3

2
√
π

λ0

ρre

I

IA
, (21)

where λ0 = 2π/k0 is the FEL wavelength, and re =
e2/mc2 is the classical electron radius.

We now use the parameters quoted in [1] for an hypo-

thetical FEL for an LHC cooler: λ0 = 10 nm, the undulator

period λu = 5 cm, I = 100 A, γ = 7.6×103. From the re-

lation between λ0 and λu we find K = 4.6. We assume the

electron beam emittance of εn = 3 μm (such a relatively

large emittance is due to a large electron beam charge of

several nC needed for CeC) and the beta function of β = 10
m in the undulator. Estimating the transverse area of the

beam as S = 2πβεn/γ we find S = 2.5 × 10−4 cm2.

From (4) we now find the parameter ρ = 8.7 × 10−4 and

the saturation length lsat/Lg = 18.3. Assuming lu = lsat,
Eq. (15) gives G = 2.8 which is more than two orders short

of the value G = 500 assumed by the authors of [1].

SCALING OF THE GAIN FACTOR WITH
BEAM PARAMETERS

In reply [2] to our comment [3] the authors claim that the

result obtained in [3] (derived above as Eqs. (17) and (18))

is in error because it gives a wrong scaling of the gain factor

with the beam and FEL parameters (and in particular with

the FEL bandwidth). In this section we derive this scaling

and show that it is in full agreement with [2], in contrast to

the statement in that paper.

Solving (21) for el
sat/2Lg and substituting it into (15) we

find the maximal gain Gmax corresponding to the length of

the undulator equal to the saturation length,

Gmax =
√
2

(
3

π

)3/4 (
Lg

lsat

)1/4 (
λ0ρ

re

I

IA

)1/2

=
31/8√
π

(
σω

ω0

)1/2 (
λ0

re

I

IA

)1/2

≈ 144

(
σω

ω0
I[A]λ0[μm]

)1/2

, (22)

where the last line gives the result in practical units. This

equation coincides with Eq. (5) in [2] if one neglects the

effects of the finite current of the proton beam, which is

beyond the scope of this paper.

It follows from Eq. (22) that the amplification factor G
is roughly proportional to the square root of the radiation

wavelength λ0. Hence choosing a larger wavelength can

increase G (assuming that an undulator for such a wave-

length is feasible). Some effects relevant for longer FEL

wavelengths are considered in the next section.

USING LONG-WAVELENGTH FEL IN
COHERENT ELECTRON COOLING

The 1D FEL theory used in the previous sections is valid

if the beam cross section area S is larger than the product of

the gain length and the inverse wave number of radiation,

S � Lg/k0. Using a large FEL wavelength can violate

this inequality. In the opposite limit, S � Lg/k0, one has

to employ the 3D FEL model, in which discreet modes are

amplified when the beam propagates through the undulator.

While analysis in this case becomes more complicated (due

to the lack of universality of the 1D model), the main effect

of the narrowness of the FEL bandwidth remains valid, as

well as our final result (18).

Increasing the wavelength λ0 can also lead to suppres-

sion of the longitudinal electric field for a given ampli-

tude of the density modulation δn. Instead of the 1D

relation δE‖ = (4πe/k0S)δn used in the previous sec-

tion one has to solve a 2D Poisson equation for a given

transverse density profile. Assuming a Gaussian pro-

file and sinusoidal modulation along the beam, δn =

δn0 sin(k0z)(2πσ
2)−1e−r2/2σ2

, it is easy to find the elec-

tric field on the axis of the beam, r = 0,

δE‖(z) = 2eδn0

k0σ2
cos(k0z)J

(
k0σ

γ

)
, (23)

where

J (q) =
1

q2

∫ ∞

0

tdt[1− tK1(t)]e
−t2/2q2 . (24)

The plot of function J (q) is shown in Fig. 1. In the limit

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

q

J

Figure 1: Function J (q).

q � 1 we have J (q) → 1 and one recovers the 1D result

with S replaced by 2πσ2. In the opposite limit q � 1 the

electric field on the axis diminishes.

Note that for parameters of the proof-of-principle instal-

lation [6] with the beam energy 21.8 MeV, the beam emit-

tance 5 μm, the beta function 5.5 m, and the FEL wave-

length 10 μm, the ratio k0σ/γ is approximately equal to
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12 and the suppression effect is negligible. However, for

higher energy FELs, it may impose a certain restriction for

the design of the cooler.
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