Paper | Title | Other Keywords | Page |
---|---|---|---|
TUOMMH03 | Status Report of SECRAL II Ion Source Development | ion, ion-source, plasma, ECR | 94 |
|
|||
Funding: Work supported by the 100 Talents Program of the CAS (No. Y214160BR0), NSF (contract No. 11221064) and MOST (contract No. 2014CB845500). For a new injector linac project launched at IMP, a superconducting ECR ion source SECRAL II is now under construction. This ion source is a duplicated one of SECRAL I which is operated routinely for HIRFL facility at the frequency of 18-24 GHz. SECRAL II is designed to be operated at the frequency of 28 GHz, which needs slightly higher radial field at the plasma chamber wall. The fabrication of the cold mass was started at early 2013, and it has been completed in May 2014. The engineering design of the whole superconducting magnet has also been finished and ready for fabrication. After a brief introduction of the recent results obtained with SECRAL I ion source, this paper will present the cold mass test results and the cryogenic system design of SECRAL II magnet. The test bench design will be also discussed. |
|||
![]() |
Slides TUOMMH03 [3.782 MB] | ||
TUOMMH05 | HIISI, New 18 GHz ECRIS for the JYFL Accelerator Laboratory | plasma, permanent-magnet, ion, ion-source | 99 |
|
|||
At the end of 2013 the Academy of Finland granted an infrastructure funding for the JYFL Accelerator Laboratory in order to increase beam intensities for the international user community. The primary objective is to construct a new high performance ECR ion source, HIISI (Heavy Ion Ion Source Injector), for the K130 cyclotron. Using room temperature magnets the HIISI has been designed to produce about the same magnetic field configuration as the superconducting ECRIS SUSI at NSCL/MSU for 18 GHz operation. An innovative structure will be used to maximize the radial confinement and safety of the permanent magnets. The sextupole magnets are separated and insulated from the plasma chamber providing two advantages: 1) the permanent magnets can be cooled down to -20˚C, which increases especially their coercivity and 2) makes it possible to reach higher radial field at the inner surface of plasma chamber. Comprehensive simulations were performed with microwave power up to 6 kW to analyse and address all the heat loads and temperature distribution on the permanent magnet. In this article the magnetic field design and detailed innovative scheme for sextupole magnet will be presented. | |||
![]() |
Slides TUOMMH05 [2.150 MB] | ||