Status Report of SECRAL II Ion Source Development

L. Sun

Institute of Modern Physics, CAS

Outline

- Motivation of SECRAL II
- Perspectives of SECRAL II
 - Latest Performance of SECRAL I
 - SECRAL II design
- SECRAL II Magnet Status
- Summary

HIRFL Operation Scheme

CSR-LINAC Project

Backup of SECRAL

Operation of SECRAL I

Operation of SECRAL I

Need contingency plan if SECRAL might fail to work

SECRAL Magnet

Pros

- Lower/simpler interaction forces;
- Smaller magnet size and cryostat;
- Simpler fabrication and somewhat a bit lower cost.

Inefficient utilization of the radial field.

Courtesy of D. Xie

SECRAL I

MP

SECRAL I

Improved Oven Tech.

Production of HCIs

SECRAL I-24 GHz Bi results-2014

Q	lq (eµA)
30	710
31	680
32	610
33	500
34	424
36	320
45	49
50	10.7
54	3.4
55	1.5
56	0.4
57	0.05

SECRAL II

Parameters	Value
ω_{rf} (GHz)	18-28
Axial Field Peaks (T)	3.7 (Inj.), 2.2 (Ext.)
Mirror Length (mm)	420 mm
No. of Axial SNs	3
B _r at Chamber Inner Wall (T)	2.0
Coldmass Length (mm)	~810
SC-material	NbTi
Magnet Cooling	LHe bathing
Warmbore ID (mm)	~142
Chamber ID (mm)	~126
Dynamic cooling power (W)	~5

NbTi Wire

Rectangular wire from WST Co. Ltd

Specs.
Monolith
Formvar
1.20 imes 0.75
1.28× 0.83
1.3:1
>100
630
27.6
15

Loading factor analysis chart

Cold Mass

Cold Mass Structure

Solenoids

SNs ramped to 115% of designed currents without any quenches

Sextupole Coils

Prepare for vacuum impregnation

Assembly

Sextupole Coils Pre-assembly

Finished Assembly

Finished with Al Clamping

Cold Mass Test@4.2 K

- Sextupole coils ramped to 85% with 6 quenches
- All coils ramped together to 90% with 8 quenches

Status of Magnet Fabrication

- Engineering design finished, and ready for factory fabrication
- Sumitomo GM coolers are ready to be delivered
- Cryogenics power supplies are to be delivered
- Total assembly is expected to be completed in Jan. 2015

Test Bench Setup

Features:

- Minimize the aberration caused by SN
- Short ECR beamline •
- Double focusing large acceptance dipole magnet (28) • cm W/18 cm H)
- Decoupling test of the beam in phase space •
- Flexible setup to improve analyzed beam resolution •

Summary

- 3rd G. ECRISs have been developed for more than 10 years, but still have great potentials
- Metal vapor supply is essential for a high performance ECRIS
- SECRAL II magnet cold mass fabricated successfully

Ion Source Group

W. Lu, Y. Yang, Y. C. Feng, W. H. Zhang, X. Z. Zhang, H. W. Zhao

Magnet Group

W. Wu, T. J. Yang, D. S. Ni, S. J .Zheng, B. M. Wu, E. M. Mei, B. Zhao, L. Zhu, L. Z. Ma

Xi'an Superconducting Magnet Technology (XSMT) Inc.

Thanks !!

Backup Slides

MP

Emittance vs. Intensity

24 GHz, Bi³¹⁺, Emittance ~600euA

24 GHz, Bi³¹⁺, Emittance ~500euA

