Author: Emma, C.
Paper Title Page
MOC03 Radiation Properties of Tapered Hard X-ray Free Electron Lasers 300
 
  • C. Emma, C. Pellegrini
    UCLA, Los Angeles, California, USA
  • S.D. Chen
    NCTU, Hsinchu, Taiwan
  • K. Fang, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
  • S. Serkez
    DESY, Hamburg, Germany
 
  We perform an analysis of the transverse coherence of the radiation from a TW level tapered hard X-ray Free Electron Laser (FEL). The radiation properties of the FEL are studied for a Gaussian, parabolic and uniform transverse electron beam density profile in a 200-m undulator at a resonant wavelength of 1.5 Angstrom. Simulations performed using the 3-D FEL particle code GENESIS show that diffraction of the radiation occurs due to a reduction in optical guiding in the tapered section of the undulator. This results in an increasing transverse coherence for all three transverse electron beam profiles. We determine that for each case considered the radiation coherence area is much larger than the electron beam spot size, making X-ray diffraction experiments possible for TW X-ray FELs.  
slides icon Slides MOC03 [3.797 MB]  
 
TUP025 TW X-ray Free Electron Laser Optimisation by Transverse Pulse Shaping 425
 
  • C. Emma, C. Pellegrini
    UCLA, Los Angeles, California, USA
  • C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
 
  We study the dependence of the peak power of a 1.5 Angstrom TW, tapered X-ray free-electron laser on the transverse electron density distribution. Multidimensional optimization schemes for TW hard X-Ray free electron lasers are applied to the cases of transversely uniform and parabolic electron beam distributions and compared to a Gaussian distribution. The optimizations are performed for a 200 m undulator and a resonant wavelength of 1.5 Angstrom using the fully 3-dimensional FEL particle code GENESIS. The study shows that the flatter transverse electron distributions enhance optical guiding in the tapered section of the undulator and increase the maximum radiation power from a maximum of 1.56 TW for a transversely Gaussian beam to 2.26 TW for the parabolic case and 2.63 TW for the uniform case. Spectral data also shows a 30-70 % reduction in energy deposited in the sidebands for the uniform and parabolic beams compared with a Gaussian.  
 
TUP028 Mode Contents Analysis of a Tapered Free Electron Laser 437
 
  • S.D. Chen, K. Fang, X. Huang, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
  • S.D. Chen, C.-S. Hwang
    NCTU, Hsinchu, Taiwan
  • C. Emma, C. Pellegrini
    UCLA, Los Angeles, California, USA
  • K. Fang, S.-Y. Lee
    Indiana University, Bloomington, Indiana, USA
  • C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
  • S. Serkez
    DESY, Hamburg, Germany
 
  For the ultimate use for the scientific experiments, the free electron laser (FEL) will propagate for long distance, much longer than the Rayleigh range, after exiting the undu- lator. To characterize the FEL for this purpose, we study the electromagnetic field mode components of the FEL photon beam. With the mode decomposition, the transverse coher- ence can be analyzed all along. The FEL here in this paper is a highly tapered one evolving through the exponential growth and then the post-saturation taper. Modes contents are analyzed for electron bunch with three different types of transverse distribution: flattop, Gaussian, and parabolic. The tapered FEL simulation is performed with Genesis code. The FEL photon beam transverse electric field is decom- posed with Gaussian-Laguerre polynomials. The evolutions of spot size, source location, and the portion of the power in the fundamental mode are discussed here. The approach can be applicable to various kind scheme of FEL.  
 
TUP029 iSASE Study 442
 
  • K. Fang
    Indiana University, Bloomington, Indiana, USA
  • S.D. Chen
    NCTU, Hsinchu, Taiwan
  • S.D. Chen, K. Fang, X. Huang, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
  • C. Emma, C. Pellegrini
    UCLA, Los Angeles, California, USA
  • S. Reiche
    PSI, Villigen PSI, Switzerland
 
  Improved Self Amplified Spontaneous Emission (iSASE) is a scheme that reduces FEL bandwidth by increasing phase slippage between the electron bunch and radiation field. This is achieved by repeatedly delaying electrons using phase shifters between undulator sections. Genesis code is modified to facilitate this simulation. With this simulation code, the iSASE bandwidth reduction mechanism is studied in detail. A Temporal correlation function is introduced to describe the similarity between the new grown field from bunching factor and the amplified shifted field. This correlation function indicates the efficiency of iSASE process.  
 
TUP030 Mode Component Evolution and Coherence Analysis in Terawatt Tapered FEL 446
 
  • K. Fang, S.D. Chen, X. Huang, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
  • S.D. Chen
    NCTU, Hsinchu, Taiwan
  • C. Emma, C. Pellegrini
    UCLA, Los Angeles, California, USA
  • K. Fang
    Indiana University, Bloomington, Indiana, USA
  • C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
  • S. Serkez
    DESY, Hamburg, Germany
 
  A fast and robust algorithm is developed to decompose FEL radiation field transverse distribution into a set of orthonormal basis. Laguerre Gaussian and Hermite Gaussian can be used in the analysis. The information of mode components strength and Gaussian beam parameters allows users in downstream better utilize FEL. With this method, physics of mode components evolution from starting stage, to linear regime and post saturation are studied with detail. With these decomposed modes, correlation function can be computed with less complexity. Eigenmodes of the FEL system can be solved using this method.