Paper | Title | Page |
---|---|---|
MOPLO24 | A Novel Technique for Pulsed Operation of Magnetrons without Modulation of Cathode Voltage | 290 |
|
||
Modern pulsed superconducting accelerators of megawatt beams require efficient RF sources controllable in phase and power. For each Superconducting RF (SRF) cavity is desirable a separate RF source with power up to hundreds of kW with pulse duration in the millisecond range. The efficiency of the traditional RF sources (klystrons, IOTs, solid-state amplifiers) is lower than that of the magnetrons, while the cost of a unit of RF power is much higher. Therefore the magnetron-based RF sources would significantly reduce the capital and operation costs in comparison with the traditional RF sources. A recently developed an innovative technique makes possible the pulsed generation of magnetrons powered below the self-excitation threshold voltage. This technique does not require pulse modulators to form RF pulses. The magnetron operation in this regime is stable, low noise, controllable in phase and power, and provides higher efficiency than other types of RF power sources. It allows operation in pulsed modes with large duty factor. The developed technique and its experimental verification are considered and discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO24 | |
About • | paper received ※ 29 August 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPLM21 | Optical Stochastic Cooling Program at Fermilab’s Integrable Optics Test Accelerator | 418 |
|
||
Funding: Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. Beam cooling enables an increase of peak and average luminosities and significantly expands the discovery potential of colliders. Optical Stochastic Cooling (OSC) is a high-bandwidth cooling technique that will advance the present state-of-the-art, stochastic-cooling rate by more than three orders of magnitude. A proof-of-principle demonstration with protons or heavy ions involves prohibitive costs, risks and technological challenges; however, exploration of OSC with electrons is a cost-effective alternative for studying the beam-cooling physics, optical systems and diagnostics. The ability to demonstrate OSC was a key requirement in the design of Fermilab’s Integrable Optics Test Accelerator (IOTA) ring. The IOTA program will explore the physics and technology of OSC in amplified and non-amplified configurations. We also plan to investigate the cooling and manipulation of a single electron stored in the ring. The OSC apparatus is currently being fabricated, and installation will begin in the fall of 2019. In this contribution, we will describe the IOTA OSC program, the upcoming passive-OSC experimental runs and ongoing preparations for an amplified-OSC experiment |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-TUPLM21 | |
About • | paper received ※ 27 August 2019 paper accepted ※ 06 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEXBA2 | Recent Results and Opportunities at the IOTA Facility | 599 |
|
||
The Integrable Optics Test Accelerator (IOTA) was recently commissioned as part of the Fermilab Accelerator Science and Technology (FAST) facility. The IOTA ring was briefly operated with electrons at 47 MeV followed by a 6-months run with 100 MeV electrons. The main goal of the first run was to study beam dynamics in the integrable lattices with elliptical nonlinear magnets and in the quasi-integrable case with profiled octupole channel. The flexibility of the IOTA ring allowed a wide range of complementary studies, such as experiments with a single electron; studies of fluctuations in undulator radiation and operation with low emittance beams. Over the next year the proton injector will be installed and two runs carried out. One run will be dedicated to the refinement of nonlinear experiments and another will be dedicated to the proof-of-principle demonstration of Optical Stochastic Cooling. | ||
![]() |
Slides WEXBA2 [12.702 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEXBA2 | |
About • | paper received ※ 31 August 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEYBB3 | Foil Scattering Model for Fermilab Booster | 632 |
WEPLH14 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. At the Fermilab Booster, and many other proton facilities, an intense proton beam is accumulated by injection an H− beam through a stripping foil. The circulating beam scatters off the injection beam and large-angle Coulomb scattering leads to uncontrolled losses concentrated in the first betatron period. We measure the foil scattering rate in the Booster as a function of linac current, number of injection-turns, and time on injection foil. We find that current Booster operations has a 1% foil scattering loss rate and we make projections for the Proton Improvement Plan II (PIP-II) injector upgrade. We find that accurate modeling of the foil scattering loss must account for beam emittance in conjunction with the scattering rate and ring acceptance. Estimate of beam emittance at injection are discussed. |
||
![]() |
Slides WEYBB3 [5.690 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEYBB3 | |
About • | paper received ※ 28 August 2019 paper accepted ※ 02 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THYBA5 | Study of Fluctuations in Undulator Radiation in the IOTA Ring at Fermilab | 934 |
SUPLH03 | use link to see paper's listing under its alternate paper code | |
TUPLH13 | use link to see paper's listing under its alternate paper code | |
|
||
We study turn-by-turn fluctuations in the number of emitted photons in an undulator, installed in the IOTA electron storage ring at Fermilab, with an InGaAs PIN photodiode and an integrating circuit. In this paper, we present a theoretical model for the experimental data from previous similar experiments and in our present experiment, we attempt to verify the model in an independent and a more systematic way. Moreover, in our experiment we consider the regime of very small fluctuation when the contribution from the photon shot noise is significant, whereas we believe it was negligible in the previous experiments. Accordingly, we present certain critical improvements in the experimental setup that let us measure such a small fluctuation. | ||
![]() |
Slides THYBA5 [8.048 MB] | |
![]() |
Poster THYBA5 [3.079 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-THYBA5 | |
About • | paper received ※ 24 August 2019 paper accepted ※ 05 September 2019 issue date ※ 08 October 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |