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Abstract:

We study turn-by-turn fluctuations in the number of emitted photons in an undulator, installed in the IOTA electron storage ring at Fermilab, with an InGaAs PIN
photodiode and an integrating circuit. In this paper, we present a theoretical model for the experimental data from previous similar experiments and in our present
experiment, we attempt to verify the model in an independent and a more systematic way. Moreover, in our experiment we consider the regime of very small
fluctuation when the contribution from the photon shot noise is significant, whereas we believe it was negligible in the previous experiments. Accordingly, we
present certain critical improvements in the experimental setup that let us measure such a small fluctuation.
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developed and verified in an independent experiment in IOTA [3]. .

It helped corroborate a model of intrabeam scattering in IOTA [4].
The agreement is expected to improve in the future.

Along with measurements of longitudinal bunch size [5-8] the
fluctuations can be used to measure transverse bunch size.

Better precision due to using the comb filter with one-turn delay
and the special noise subtraction algorithm.

Fluctuations data collected for different values of bunch charge.
The transition from Poisson statistics to Super-Poisson statistics
was observed in undulator radiation for the first time.
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