Author: Fan, K.
Paper Title Page
WEPLS12 A Semi-Analytical Approach to Six-Dimensional Path-Dependent Transport Matrices With Application to High-Brightness Charged-Particle Beam Transport 792
 
  • C.-Y. Tsai
    HUST, Wuhan, People’s Republic of China
  • K. Fan
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People’s Republic of China
 
  Funding: This work was supported by the Fundamental Research Funds for the Central Universities under Project No. 5003131049.
Efficient and accurate estimate of high-brightness electron beam dynamics is an important step to the overall performance evaluation in modern particle accelerators. Utilizing the moment description to study multi-particle beam dynamics, it is necessary to develop a path-dependent transport matrix, together with application of the drift-kick algorithm*. In this paper we will construct semi-analytical models for three typical beam transport elements, solenoid with fringe fields, transverse deflecting cavity, and a beam slit. To construct the semi-analytical models for these elements, we begin by formulating the simplified single-particle equations of motion, and apply typical numerical techniques to solve the corresponding six-by-six transport matrix as a function of the path coordinate. The developed semi-analytical models are demonstrated with three practical examples, where our numerical results are discussed, compared with and validated by particle tracking simulations. These path-dependent transport matrix models can be incorporated to the analysis based on beam matrix method for the application to high-brightness charged-particle beam transport.
* C.-Y. Tsai et al., Nuclear Inst. And Methods in Physics Research, A 937 (2019) 1-20
 
poster icon Poster WEPLS12 [3.099 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLS12  
About • paper received ※ 20 August 2019       paper accepted ※ 03 September 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLS08 Error Tolerance Characterization for the HUST MeV Ultrafast Electron Diffraction System 166
 
  • Y. Song, K. Fan, C.-Y. Tsai
    HUST, Wuhan, People’s Republic of China
 
  Ultrafast electron diffraction (UED) is a powerful tool for probing atomic dynamics with a femtosecond resolution. Such a spatiotemporal resolution requires error tolerance for the UED system which includes the RF system, the laser system, the beamline elements, etc. To characterize the error tolerance of the required spatiotemporal resolution for the 1.4-cell MeV UED we are developing, we use ASTRA to simulate the UED model with errors including initial transverse beam centroid offset, RF amplitude jitter and injection phase jitter, etc. By performing simulations with different errors omitted, we can characterize the contribution of each error and thus set the tolerance for each error to obtain the required performance of UED experiment. In the end, we present the error tolerance for 10% emittance growth and 100 fs time of flight variation to maintain the required spatiotemporal resolution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLS08  
About • paper received ※ 25 August 2019       paper accepted ※ 31 August 2019       issue date ※ 08 October 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)