JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for WEPLS12: A Semi-Analytical Approach to Six-Dimensional Path-Dependent Transport Matrices With Application to High-Brightness Charged-Particle Beam Transport

TY  - CONF
AU  - Tsai, C.-Y.
AU  - Fan, K.
ED  - Yamazaki, Yoshishige
ED  - Raubenheimer, Tor
ED  - McCausey, Amy
ED  - Schaa, Volker RW
TI  - A Semi-Analytical Approach to Six-Dimensional Path-Dependent Transport Matrices With Application to High-Brightness Charged-Particle Beam Transport
J2  - Proc. of NAPAC2019, Lansing, MI, USA, 01-06 September 2019
CY  - Lansing, MI, USA
T2  - North American Particle Accelerator Conference
T3  - 4
LA  - english
AB  - Efficient and accurate estimate of high-brightness electron beam dynamics is an important step to the overall performance evaluation in modern particle accelerators. Utilizing the moment description to study multi-particle beam dynamics, it is necessary to develop a path-dependent transport matrix, together with application of the drift-kick algorithm*. In this paper we will construct semi-analytical models for three typical beam transport elements, solenoid with fringe fields, transverse deflecting cavity, and a beam slit. To construct the semi-analytical models for these elements, we begin by formulating the simplified single-particle equations of motion, and apply typical numerical techniques to solve the corresponding six-by-six transport matrix as a function of the path coordinate. The developed semi-analytical models are demonstrated with three practical examples, where our numerical results are discussed, compared with and validated by particle tracking simulations. These path-dependent transport matrix models can be incorporated to the analysis based on beam matrix method for the application to high-brightness charged-particle beam transport.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 792
EP  - 795
KW  - solenoid
KW  - simulation
KW  - emittance
KW  - cavity
KW  - electron
DA  - 2019/10
PY  - 2019
SN  - 2673-7000
SN  - 978-3-95450-223-3
DO  - doi:10.18429/JACoW-NAPAC2019-WEPLS12
UR  - http://jacow.org/napac2019/papers/wepls12.pdf
ER  -