Paper | Title | Page |
---|---|---|
MOPML017 | Status and Development of the MYRRHA Injector | 432 |
|
||
The MYRRHA project aims at coupling a cw 600 MeV, 4 mA proton linac with a sub-critical reactor as the very first prototype nuclear reactor to be driven by a particle accelerator (ADS). Among several applications, MYRRHA main objective is to demonstrate the principle of partitioning and transmutation (P&T) as a viable solution to drastically reduce the radiotoxicity of long-life nuclear waste. For this purpose, the linac needs an unprecedented level of reliability in terms of allowable beam trips. The normal conducting injector delivers 16.6 MeV protons to the superconducting main linac. The first section of the injector (up to 5.9 MeV) consists of an ECR source, a 4-Rod-RFQ and a rebunching line followed by 7 individual CH-type cavities. This entire section will be set up and operated by SCK·CEN in Louvain-la-Neuve, Belgium, for ample performance and reliability testing. The first CH cavity has been sent for power tests to IAP Frankfurt, Germany. The most recent status of all cavities, couplers and the beam diagnostics of the MYRRHA injector is presented in this paper. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML017 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAF089 | Initial Measurements on a New 108 MHz 4-Rod CW RFQ Prototype for the HLI at GSI | 946 |
|
||
Funding: Work supported by BMBF Contr. No. 05P15RFBA and HIC for FAIR The High Charge State Injector (HLI) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany, is one of the two injector linacs for the Universal Linear Accelerator (UNILAC) and is also planned to serve as dedicated injector for a proposed superconducting CW linac for heavy element research. Within the scope of an intended CW upgrade of the HLI front end, a replacement for the existing 4-rod RFQ is desirable since its stable operation and performance is severely impeded by mechanical vibrations of the electrodes and a high thermal sensitivity*. With the aim of suppressing mechanical vibrations and providing efficient cooling considering high power CW operation, a completely new and improved 4-rod design was developed** with a focus on structural mechanical simulations using ANSYS. In order to validate the simulated RF performance, thermal behavior and structural mechanical characteristics, a 6-stem prototype was manufactured***. Initial low power RF measurements and basic piezo actuated mechanical investigations were done and the anticipated properties could be confirmed prior to planned high power RF tests and further mechanical vibration studies. * D. Koser et al., THPIK021, Proc. of IPAC2017 ** D. Koser et al., MOPOY020, Proc. of IPAC2016 *** D. Koser et al., TUPLR057, Proc. of LINAC2016 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF089 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAF090 | Measurements of the MYRRHA-RFQ at the IAP Frankfurt | 949 |
|
||
Funding: Work supported by the EU Framework Programme H2020 662186 (MYRTE) The MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) Project is a planned accelerator driven system (ADS) which aims to demonstrate the feasibility of large scale transmutation. The first RF structure of the 600 MeV MYRRHA Linac will be a 176.1 MHz 4-Rod RFQ that will accelerate up to 4 mA protons in cw operation from 30 keV up to 1.5 MeV. The voltage along the approximately 4 m long electrodes has been chosen to 44 kV which limits the RF losses to about 25 kW/m. During the design of the structure a new method of dipole compensation has been applied. This paper describes the status of the RFQ and shows the results of the measurements done at IAP Frankfurt such as dipole and flatness measurement, vacuum tests and power tests up to 11 kW. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF090 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPML043 | RF Simulations of the Injector Section from CH8 to CH15 for MYRRHA | 2790 |
|
||
Funding: Work supported by the EU Framework Programme H2020 662186 (MYRTE) and HIC for FAIR MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the first prototype of an accelerator driven nuclear reactor dealing with the transmutation of long-living nuclear waste. Beam quality and reliability are crucial for the reactor. The injector design is done by IAP, Goethe-University, and has been adapted to the final magnet design and voltage distributions. The energy section from 5.87 MeV up to 16.6 MeV has been changed to normal conducting CH cavities as in the lower energy part of the injector. For beam adjustment a 5-gap CH cavity rebuncher at 5.87 MeV as well as two doublet magnets forming the new MEBT-2 section between CH7 and CH8 have been added. Starting parameters for the RF simulations have been given by beam dynamics results calculated with LORASR. RF simulations of these structures consisting of flatness and tuning optimizations will be presented within this contribution. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML043 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPML044 | Design of HOM Couplers for Superconducting 400 MHz RF Cavities | 2793 |
|
||
The Future Circular Collider (FCC) is one possible future successor of the Large Hadron Collider (LHC). The proton-proton collider center-of-mass collision energy is set to 100 TeV with a beam current of 0.5 A. To reach this goal a stable acceleration is critical and therefore higher order modes (HOM) need to be damped. To avoid a high power level in the HOM dampers, further described as couplers, the loaded Q-factor should be below 1000 for the cavity with mounted HOM couplers. Besides a low Q-factor the R/Q value should also be in the range of 1 Ω or below. Two different types of couplers are used to achieve a high damping. The two types are a narrowband Hook-type HOM coupler and a broadband Probe-type HOM coupler. The recent results of the design of the HOM couplers attached to a superconducting 400 MHz RF cavity will be presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML044 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |